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Abstract

The matching of next-to-leading order (NLO) QCD calculations to parton showers is the state of the art for precision
predictions in LHC phenomenology. Following the POWHEG method, we extend this matching procedure to include
NLO electroweak (EW) corrections within the Standard Model. The matching also implies a consistent treatment
of photons, which can be emitted either as real radiation in the NLO calculation or as part of the parton-shower
simulation which includes multiple photon emissions. Presenting the parton-level results in terms of events, the EW
corrections can be employed in LHC analyses in a standard way by feeding them to a parton shower. The method has
been applied to the Drell-Yan process, a standard candle at the LHC.
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1. Introduction

Predictions for LHC phenomenology are constantly
improved. During recent years, next-to-leading order
(NLO) QCD corrections have become available even
for multi-leg final states. As a further improvement, the
available NLO precision for inclusive observables can
be combined with the leading-log resummation of par-
ton showers. Since radiation can be generated by the
real-emission contribution within the NLO calculation
as well as by parton splittings within the parton-shower
simulation, double counting has to be avoided. A con-
sistent combination is known as parton-shower match-
ing [1, 2]. In the following, we consider the POWHEG
method [1].

Besides the dominant QCD effects, electroweak
(EW) corrections can also play an important role for
LHC phenomenology. For precision measurements,
even the generically expected percent-level corrections
due to EW corrections have to be taken into account.
Moreover, EW corrections can be logarithmically en-
hanced. In particular, the LHC probes the so-called
Sudakov regime where EW corrections for high-energy
reactions with large Mandelstam s include Sudakov-
double logarithms log2(M2

V/s) due to loop-diagrams

with weak bosons of mass MV . At TeV energies, which
are made available by the LHC for the first time, these
corrections can amount up to several tens of percent, de-
pending on the process under consideration. The other
source of large EW logarithms is due to final-state ra-
diation of photons. In particular, if leptons are defined
as bare objects without any jet-like lepton–photon re-
combination, the small lepton mass can appear as the
argument of logarithms. While the weak Sudakov log-
arithms are due to virtual corrections, the photonic cor-
rections are approximated by a parton shower which in-
cludes photon radiation. Here, we aim at generalizing
the POWHEG method to include EW corrections. By
properly extending the matching procedure, one can in-
clude all virtual corrections in the Standard Model as
well as all photonic effects in a consistent way. As
an additional benefit, the POWHEG method allows to
present the results in terms of events. Hence, the cal-
culated EW corrections are made available in a form
which can be easily used for experimental analyses.

For the Drell-Yan process, POWHEG matching in-
cluding EW corrections has already been investigated
by other groups [3, 4]. For the matching, an NLO cal-
culation for the physical final state is needed. In recent
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years, quite a few of these calculations have become
available [5–11] for final states including the leptons
from weak boson decays. Hence, applications beyond
the Drell-Yan process are within reach.

In the following section, we report on work in
progress [12–14] for parton-shower matching including
EW corrections using the POWHEG method.

2. Using the POWHEG method for EW corrections

The POWHEG method is discussed in great detail in
Ref. [1], where the POWHEG formula

dσ = dσNLO

[
∆(pmin

T ) + ∆(pT )
R(Φn+1)
B(Φn)

dΦrad

]
(1)

is introduced. To achieve NLO accuracy, the differen-
tial NLO cross section dσNLO replaces the Born cross
section in a standard parton shower. Moreover, the ra-
tio of the full real-emission matrix element R and the
Born matrix element B replaces the splitting function to
describe the hardest emission with respect to transverse
momentum pT . Also the Sudakov form factor ∆(pT ),
i.e. the probability to have no emission down to a given
pT , has to be based on the same ratio of matrix elements.
It is well-known how to generate events based on Eq. (1)
and how to shower these events consistently [1].

The NLO cross section

dσNLO = B̄(Φn) dΦn =

(
B + V +

∫
dΦrad R

)
dΦn

is differential with respect to the complete Born phase
space Φn of the n-particle final state and includes the
Born contribution B, the virtual corrections V and the
real-emission matrix elements R integrated over the ra-
diation phase space Φrad.

To include EW corrections, the corresponding vir-
tual corrections and the contributions due to real pho-
ton emission have to be included in the B̄-function in
addition to the QCD contributions. For the neutral-
current Drell-Yan process, pp → l+l−, we have used
virtual and real matrix elements which have been exten-
sively tested against the calculation of Ref. [15]. To con-
sistently describe the Z-boson resonance at NLO with
respect to the EW corrections, we have employed the
complex-mass scheme [16]. Concerning QCD, there is
only initial-state radiation in the Drell-Yan process. In-
cluding EW corrections, also final-state radiation due
to photon emission from the charged leptons has to be
considered.

A general framework for QCD applications using
the POWHEG method has been made available as the

POWHEG BOX [17]. The POWHEG BOX is a Fortran
code which only needs the matrix elements and the fla-
vor structures, i.e. information on the external particles,
of the considered process as input. Given this input, the
generation of events according to Eq. (1) is performed
automatically.

We have chosen different approaches to obtain a
parton-shower matched calculation including EW cor-
rections for the neutral-current Drell-Yan process. One
approach is based on modifying the POWHEG BOX.

The virtual EW corrections can be easily added.
For real emissions, the POWHEG BOX uses the FKS
method [18] due to Frixione, Kunszt, and Signer to
define the radiation phase space and to associate each
emission consistently to one emitting particle. In addi-
tion to colored particles as the standard source of (QCD)
radiation, also charged leptons have to be considered as
possible sources of (photon) radiation. Of course, color
has to be replaced by charge in all relevant formulae in-
side the POWHEG BOX for the generation of photon
radiation and the fine-structure constant α replaces the
strong coupling constant αs. Since the running of α can
be neglected as a good approximation, the evaluation of
the Sudakov form factors is adapted accordingly. Us-
ing a modified POWHEG BOX, we have successfully
generated events including photon emission which can
be compared before parton showering to our fixed-order
results at NLO. In Fig. 1 [14], we show the EW correc-
tions to the invariant-mass distribution of the two final-
state leptons at the LHC. Here, no QCD effects are con-
sidered. We use the Gµ scheme to define α and recom-
bine leptons and photons within a small cone of size
∆R = 0.1. The EW corrections hardly depend on the
LHC energy, the PDF or scale choices. The lower tail
of this invariant-mass distribution is enhanced by hard
final-state radiation from events at the Z-boson peak.
Since hard multi-photon radiation is a small effect, the
difference between the POWHEG and the fixed-order
result is minor.

A second approach is based on the Catani-Seymour
(CS) dipole subtraction formalism [19] which has
also been introduced in the context of the POWHEG
method [1]. Our NLO calculation of the EW corrections
has been performed using CS. Employing this calcula-
tion, we have created an independent implementation of
the POWHEG method.

Starting from a Born phase-space point, we use an in-
verse dipole mapping of CS to define the radiation phase
space for a given particle emitting a photon. To calcu-
late the subtracted real-emission matrix element in CS,
all dipoles are needed for each phase-space point. How-
ever, the dipoles are associated to different Born phase-
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space points via the dipole mappings. Only the dipole
whose inverse mapping is used to define the radiation
phase space is mapped back to the original Born phase-
space point. Hence, the calculation of a local K-factor
for a given Born phase-space point in our CS approach
needs additional considerations.

In contrast to FKS, CS is designed to work indepen-
dently of the method to generate the real-emission phase
space. Hence, it necessarily has to associate differ-
ent Born configurations to a given real-emission phase-
space point, which can have different singular limits.
FKS, in contrast, is based on particular phase-space pa-
rameterizations of the singular limits. Each parameteri-
zation covers one singular limit using plus-distributions
to isolate the singularities. The necessary partitioning of
the phase space into singular regions is rather arbitrary
(as long as there is only one singular limit per region).

To recover the local K-factor within CS, we have to
use an analog of the phase-space partitioning in FKS.
Therefore, we generate a phase space for each inverse
dipole mapping. To avoid double counting we use a
projection of the real-emission matrix element, which is
based on the dipoles themselves. It is designed so that,
in singular regions, the matrix element is projected onto
the dipole which is used for generating the given radia-
tion phase-space. Hence, only this dipole is needed for
subtraction and the local K-factor can be established.
However, in our approach, the computational effort is
rather large. For each dipole, one has to generate a
radiation phase-space point. In turn at each of those
points, all the dipoles are needed to calculate the pro-
jected matrix element. For Drell-Yan, the computational
cost is, of course, manageable and we have been able
to reproduce the results obtained within the POWHEG
BOX. However, for more complicated processes, the
prospects of our CS-based approach are questionable.
For independent cross-checks of our POWHEG BOX
implementation, it is indeed more promising to set up
the NLO calculation using the FKS method and to use
the POWHEG method based on this FKS calculation.

To summarize, using the POWHEG method, we
have included EW corrections into an NLO calculation
which is matched to a parton shower including photon
radiation for the Drell-Yan process. In the future, the
method can also be applied to other processes where
the NLO EW corrections are available.
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Figure 1: Relative EW corrections δEW to the invariant-mass distribu-
tion of the lepton pair in the neutral-current Drell-Yan process [14] at
NLO and using a modified POWHEG BOX. Photons and leptons with
∆R < 0.1 are recombined.
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