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Abstract

Unstable particles are notorious in perturbative quantum field theory for producing singular propagators in scattering
amplitudes that require regularization by the finite width. In this review I discuss the construction of an effective field
theory for unstable particles, based on the hierarchy of scales between the mass, M, and the width, Γ, of the unstable
particle that allows resonant processes to be systematically expanded in powers of the coupling α and Γ/M, thereby
providing gauge-invariant approximations at every order. I illustrate the method with the next-to-leading order line-
shape of a scalar resonance in an abelian gauge-Yukawa model, and results on NLO and dominant NNLO corrections
to (resonant and non-resonant) pair production of W-bosons and top quarks.
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1. Introduction

The consistency of the Standard Model (SM) of par-
ticle physics is tested at high-energy colliders primar-
ily through the production and subsequent decay of un-
stable particles. New particles, if discovered, are most
likely also short-lived. At the current high-energy fron-
tier all known fundamental interactions are perturba-
tively weak, allowing for very precise theoretical com-
putations in principle. Nevertheless, the application of
perturbation theory to processes with unstable particles
is not always straightforward.

The very notion of an unstable particle requires clar-
ification. In quantum field theory the fundamental en-
tities are the fields from which the Lagrangian is con-
structed, but the excitations of the fundamental fields
may not correspond to the asymptotic particle states as-
sumed in scattering theory, if they are strongly interact-
ing as is the case for the quarks and gluons of QCD,
or unstable with respect to decay into lighter particles.
Relevant cases include the electroweak gauge bosons
and the top quark, which although all very short-lived,
have width over mass ratios of a few percent, larger than
the accuracy of precision calculations. Principal ques-

tions related to field theories with unstable “particles”
such as their unitarity on the Hilbert space built upon
the one-particle states of only stable particles have been
answered many years ago [1]. The construction of the
unitary S -matrix is based on certain properties of the ex-
act two-point function of the unstable-particle field. Al-
though a diagrammatic interpretation is assumed, there
is no explicit reference to a perturbation expansion in
the coupling that renders the particle unstable.

Since exact two-point functions are not at hand, this
raises the question of consistent, successive approxima-
tions. Ordinary perturbation theory in the Lagrangian
coupling g does not work, since the lowest-order prop-
agator of the unstable particle leads to singularities in
scattering amplitudes. A well-known remedy of the sin-
gularity is the resummation of self-energy corrections to
the propagator, which results in the substitution

1
p2 − M2 →

1
p2 − M2 − Π(p2)

. (1)

The self-energy has an imaginary part of order M2g2 ∼

MΓ, where Γ is the on-shell decay width of the reso-
nance, rendering the propagator large but finite. “Dyson
resummation” sums a subset of singular terms of or-
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der (g2M2/[p2 − M2])n ∼ 1 (near resonance where
p2 ∼ MΓ) to all orders in the expansion in g2. This pro-
cedure leaves open the question of how to identify all
terms (and only these) required to achieve a specified
accuracy in g2 and Γ/M. Failure to address this ques-
tion may lead to a lack of gauge invariance and unitarity
of the resummed amplitude, since these properties are
guaranteed only order-by-order in perturbation theory,
and for the exact amplitude.

Despite the fact that unstable particle fields have no
corresponding asymptotic particle states and hence their
propagators should never be cut, this point is often ig-
nored in practice and the particle is treated in Feynman
diagram and cross section calculations as if it were sta-
ble (“narrow-width approximation”). This can be justi-
fied when the width is very small, since

MΓ

(p2 − M2)2 + M2Γ2

Γ→0
→ πδ(p2 − M2). (2)

The limit holds in the distribution sense and is therefore
valid only, if the phase-space of the unstable particle is
integrated sufficiently inclusively, such that the integra-
tion contour in the variable p2 can be deformed far away
from M2. This is not always the case. An obvious ex-
ample is the line-shape, but also distributions may trap
the contour near M2. A more accurate treatment than
(2) is also required, when the desired precision exceeds
the leading-order approximation in Γ/M.

Somewhat surprisingly, systematic computational
schemes to obtain approximations to scattering pro-
cesses involving unstable particles in weak coupling ex-
pansions are relatively recent. The two, which are gen-
eral, are the unstable-particle effective theory and the
complex mass scheme.

1.1. Unstable-particle effective theory
The singularity of the unstable particle propagator in-

dicates sensitivity to a time scale larger than the Comp-
ton wave-length 1/M of the particle, evidently its life-
time 1/Γ. The presence of two different scales Γ � M
lies in the very nature of the problem, since a resonance
with Γ ∼ M would not be identified as such. The main
idea of unstable-particle effective field theory [2, 3] is
to exploit this hierarchy of scales in order to systemati-
cally organize the calculations in a series in the coupling
g, and Γ/M. The short-distance scale M is integrated
out by performing standard perturbative computations
and the full theory is matched to an effective Lagrangian
that reproduces the physics at the scale Γ. The effective
theory contains a field φv, which describes a resonance
with momentum p = Mv + k, where only k ∼ Γ is fluc-
tuating. The resonant field can interact with other soft

fields with momenta of order Γ, but off-shell effects at
the scale M are part of the matching coefficients. The
power-counting of fields and interactions in the effective
theory leads to a systematic construction of the expan-
sion in Γ/M.

The expansion of amplitudes in matching calcula-
tions is performed around the gauge-invariant location

M2
? = M2 − iMΓ (3)

of the pole in the complex p2 plane corresponding to
the resonance, where M is identified with the pole mass,
and Γ with the on-shell width. The expansion is similar
to the one performed in the “pole” [4, 5] or “double-
pole” (in pair production of resonances) [6, 7] approx-
imation. In a certain sense, unstable-particle effective
field theory represents the field-theoretic formulation of
the diagrammatic pole approximation, and generalizes
it to all orders in perturbation theory and beyond the
leading power in the Γ/M expansion. A first step in this
direction had already been presented in [8].

The effective theory approach is minimal as it iden-
tifies precisely the terms required to achieve a specified
accuracy in g2, and Γ/M, and does not include more.
This makes the calculations particularly simple. Fur-
thermore, the operator interpretation allows for the sum-
mation of large logarithms of Γ/M through renormaliza-
tion group equations and anomalous dimensions. There
is a draw-back: the details of the effective theory de-
pend on the inclusiveness of the observable and is not
valid locally over the entire phase-space, where some
portions may involve further soft scales of order Γ in
addition to (p2 − M2)/M. Even the prediction of the
resonance line-shape requires matching of the resonant
(peak) region calculation within the effective theory to
the off-resonance region computed with standard pertur-
bation theory.

1.2. The complex-mass scheme

The complex-mass scheme is an extension of the
standard on-shell renormalization scheme to unstable
particles. It defines the complex mass and field renor-
malization constant from the location and residue of the
pole (3) of the unstable-particle propagator. The bare
mass M0 is split into a renormalized mass and countert-
erm through

M2
0 = M2

? + δM2
?, (4)

and δM2
? is part of the interaction Lagrangian and

treated as a perturbation. The unstable-particle prop-
agator i/(p2 − M2

?) is never infinite for physical, real
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momenta. The complex-mass scheme was discussed al-
ready in [9], but it was used for the first time in a full
one-loop calculation only in 2005 [10] for the process
e+e− → 4 fermions (+γ) at high energies, which re-
ceives important contributions from the unstable W+W−

intermediate state.
Although the standard rules of perturbation theory

and an expansion in the number of loops apply to the
complex-mass scheme, a re-ordering and resummation
of the g2 expansion is implicit, since the propagator is
of order 1/(M2g2) in the resonance region. The assump-
tion is that the complex mass in the propagator captures
all terms that need to be resummed which is indeed the
case (see also next section). Since the scheme is only a
reparameterization of the bare theory, which is not mod-
ified, it is obvious that no double counting occurs. Like-
wise, gauge invariance is assured, since the split (4) is
gauge-invariant and the algebraic identities that guaran-
tee gauge invariance are valid in the presence of com-
plex parameters. Unitarity might be a concern, since the
unitarity equation involves complex conjugation. How-
ever, since the bare theory is unitary, so must be the
reparameterized one. What needs to be shown is that
the theory with the complex-mass prescription is per-
turbatively unitary in the sense that unitarity violation
in any given order in the loop expansion are of higher
order in the expansion parameters (counting Γ/M ∼ g2).
This point was demonstrated explicitly at one-loop for
fermion-fermion scattering through a vector-boson res-
onance [11], and in general in [12].

The complex-mass scheme is conceptually straight-
forward. It does not require separate treatments of the
resonance and off-resonance regions, and can easily be
applied to kinematic distributions. Compared to the ef-
fective field theory method the scheme does not make
use (explicitly) of expansions in Γ/M and hence does
not simplify the problem as much as possible in prin-
ciple. The difficulty of the calculation is equivalent to
the corresponding standard loop calculation with the
additional complication of loop integrals with complex
masses. This is not a practical problem at the one-loop
order, making the complex-mass scheme the method of
choice for automated next-to-leading order calculations.
On the other hand, calculations beyond this order would
presently be difficult and the resummation of logarithms
ln M/Γ cannot be performed.

In the following I do not discuss the complex-mass
scheme further, but focus on unstable-particle effective
theory. I use the line-shape of a resonance to illustrate
the framework and the discuss results on pair produc-
tion of W-bosons and top quarks near threshold which
(I believe) benefit particularly from this method.

2. Line-shape of an unstable particle

In this section, which follows [2, 3], we consider a
toy model that involves a massive scalar field, φ, and
two fermion fields. The scalar as well as one of the
fermion fields, ψ, (the “electron”) are charged under an
abelian gauge symmetry, whereas the other fermion, χ,
(the “neutrino”) is neutral. The model allows for the
scalar to decay into an electron-neutrino pair through a
Yukawa interaction. The model describes the essential
features of the Z-boson line-shape in the SM [13]. Its
Lagrangian is

L = (Dµφ)†Dµφ − M̂2φ†φ + ψ̄i 6Dψ + χ̄i6∂χ

−
1
4

FµνFµν −
1
2ξ

(∂µAµ)2

+ yφψ̄χ + y∗φ†χ̄ψ −
λ

4
(φ†φ)2 +Lct , (5)

where M̂ denotes the renormalized mass, not neces-
sarily the pole mass M defined by (4), Lct the coun-
terterm Lagrangian, and Dµ = ∂µ − igAµ. We define
αg ≡ g2/(4π), αy ≡ (yy∗)/(4π) (at the scale µ) and as-
sume αg ∼ αy ∼ α, and αλ ≡ λ/(4π) ∼ α2/(4π).

The line-shape is the totally inclusive cross section
for the process

ν̄(q) + e−(p)→ X (6)

as a function of s ≡ (p + q)2, which can be calculated
from the imaginary part of the forward scattering ampli-
tude T (s).1 In particular, we are interested in the region
s ≈ M2, or more precisely s−M2 ∼ MΓ ∼ αM2 � M2,
where we expect an enhancement of the cross section
due to the resonant production of the scalar. Defining
the dimensionless variable

δ ≡
s − M̂2

M̂2
∼

Γ

M
, (7)

the cross section far away from the resonance can be
expanded in g2 in the usual manner according to

σ = g4 f1(δ) + g6 f2(δ) + . . . . (8)

At every order, the coefficient fn(δ) is a function of the
variable δ ∼ 1. On the other hand, near resonance we
may exploit δ � 1 to expand the amplitude in δ. At the
same time, as g2/δ ∼ 1 since Γ ∼ Mg2, some terms must
be summed to all orders. A systematic approximation

1The total cross section of process (6) is not infrared finite for
massless electrons due to an initial-state collinear singularity, which
has to be absorbed into the electron distribution function. In what
follows it is understood that this singularity is subtracted minimally.
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to the line-shape in the resonance region therefore takes
the form

σ ∼
∑

n

(
g2

δ

)n
× {1 (LO); g2, δ (NLO), . . .}

= h1(g2/δ) + g2h2(g2/δ) + . . . (9)

with non-trivial functions hn(g2/δ) at every order in the
reorganized expansion. The effective theory identifies
the relevant terms and constructs the expansion (9).

2.1. Relevant modes and reduced scattering diagrams

The effective theory is based on the hierarchy of
scales Γ � M. In a first step we integrate out hard mo-
menta k ∼ M. The effective theory will then not contain
any longer dynamical hard modes since their effect is
included in the coefficients of the operators. The hard
effects are associated with what is usually called fac-
torizable corrections, whereas the effects of the dynam-
ical modes correspond to the non-factorizable correc-
tions [8]. On the level of Feynman diagrams, the hard
contribution can be identified directly using the method
of regions to separate loop integrals into various contri-
butions [14]. The hard part is obtained by expanding the
full-theory integrand in δ.

The modes to be described by the effective La-
grangian correspond to kinematically allowed scatter-
ing processes with virtualities much smaller than M2.
Particles with masses above MΓ are no longer present,
except for the unstable particle, which by construction
is close to mass-shell. To account for this, we write
the momentum of the scalar particle as P = M̂v + k,
where the velocity vector v satisfies v2 = 1 and the
residual momentum k scales as Mδ ∼ Γ. In analogy
to heavy-quark effective theory (HQET) we remove the
rapid spatial variation e−iM̂v·x from the φ field and define
φv(x) ≡ eiM̂v·x P+φ(x), where P+ projects onto the pos-
itive frequency part to ensure that φv is a pure destruc-
tion field. A field with momentum fluctuations k ∼ Γ is
called a “soft” field. Thus, for the soft scalar field φv we
have P2 − M̂2 ∼ M2δ. This remains true if the scalar
particle interacts with a soft gauge boson with momen-
tum Mδ, so the effective Lagrangian should contain soft
(s) fields for every massless field of the full theory.

The unstable particle is produced in the scattering of
on-shell particles with large energy of order M. These
can remain near mass-shell by radiating further ener-
getic particles in their direction of flight. The effective
Lagrangian must therefore also contain hard-collinear
(c1) modes with momentum scaling

n+ p ∼ M, p⊥ ∼ Mδ1/2, n−p ∼ Mδ (10)

Figure 1: Reduced diagram topologies in 2 → 2 scattering near reso-
nance. Left: resonant scattering. Right: non-resonant scattering.

for all massless fields of the original Lagrangian. Here
n± are two light-like vectors with n+ · n− = 2, n− is
the direction of the electron four-momentum, and p⊥ is
transverse to n− and n+.2

The space-time picture of the kinematically allowed
processes is very simple and the corresponding re-
duced diagram topologies are shown in Figure 1 for
the forward-scattering amplitude. The left diagram de-
scribes the production of the resonance through a hard
process, represented in the effective theory by some lo-
cal operator O(k)

p , and its subsequent propagation over
distances of order 1/Γ. The resonance (double line) can
interact with soft fluctuations. The initial-state electron
leg can be dressed with collinear corrections. However,
collinear modes cannot be exchanged across the dou-
ble line, since this would not leave enough energy to
produce the scalar near resonance. The process just de-
scribed is represented in the effective theory by the first
line of the master formula

iT =
∑
k,l

∫
d4x 〈νe|T (iO(k)

p (0)iO(l)
p (x))|νe〉

+
∑

k

〈νe|iO(k)
nr (0)|νe〉. (11)

for the forward-scattering amplitude.
The scattering may also occur without the produc-

tion of the scalar near its mass-shell (right diagram in
Figure 1). In the present toy theory this still requires
an intermediate scalar line, since the neutrino has only
Yukawa interactions. The scalar may be off-shell, be-
cause the electron has radiated an energetic (hard or

2In the general case several types of collinear modes are required,
one for each direction defined by energetic particles in the initial and
final state. For the inclusive line-shape we calculate the forward-
scattering amplitude, so no direction is distinguished in the final state.
We then need two sets of collinear modes, one for the direction of the
incoming electron, labelled by “c1” (or often simply “c”), the other
for the direction of the incoming neutrino (labelled “c2”). Since the
neutrino is electrically neutral, the collinear fields ψc2, Ac2 and χc1
appear only in highly suppressed terms, so we can ignore them here.
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collinear) photon before it hits the neutrino. In this case
the invariant mass of the colliding electron-neutrino sys-
tem is of order M2 but not near M2, producing a non-
resonant scalar. In the effective theory this process is
represented by a local four-fermion operator O(k)

nr , with-
out φv fields. In general, non-resonant scattering in-
cludes all “background processes”, which produce one
of the final states under consideration. This topology
does not involve a resonant heavy scalar, and both soft
and collinear fields can be exchanged across the dia-
gram. The matrix elements in (11) are understood to
be evaluated with the effective Lagrangian.

2.2. Construction of the effective Lagrangian

We divide the effective Lagrangian into three parts.
Roughly speaking, the first, LHSET, describes the heavy
scalar field near mass-shell and its interaction with the
gauge field. The second part, L±, describes energetic
fermions and their interactions with the gauge field. Fi-
nally, the third part,Lint contains the local operatorsO(k)

p

and O(k)
nr responsible for the production of the resonance

and off-shell processes. In the following, we write down
all terms needed for a next-to-leading order (NLO) cal-
culation of the line-shape.

The soft Lagrangian LHSET is an extension of the
HQET Lagrangian [15] to a (here scalar) particle whose
mass-shell is defined by the complex pole location (4).
The residual mass term which is usually set to zero in
HQET by choosing M to be the pole mass of the heavy
quark, is now necessarily non-vanishing and complex.
The relevant terms are

LHSET = 2M̂φ†v

(
iv · Ds −

∆(1)

2

)
φv

+ 2M̂φ†v

(
(iDs,>)2

2M̂
+

[∆(1)]2

8M̂
−

∆(2)

2

)
φv

−
1
4

FsµνF
µν
s + ψ̄si 6Dsψs + χ̄si 6∂χs, (12)

where ψs (χs) denotes the soft electron (neutrino) field
and the covariant derivative Ds ≡ ∂ − igAs includes the
soft photon field. Furthermore, aµ> ≡ aµ − (v · a) vµ for
any vector. The only non-trivial short-distance match-
ing coefficients in this expression are the quantities ∆(i)

to be defined below.
The bilinear terms in the soft scalar field φv are de-

termined by the requirement that LHSET reproduces the
two-point function of the scalar in the full theory close
to resonance. Denoting the complex pole of the propa-
gator by M2

? and the residue at the pole by Rφ, the prop-

agator near resonance can be written as

i Rφ

P2 − M2
?

=
i Rφ

2M̂v · k + k2 − (M2
? − M̂2)

. (13)

We now define the matching coefficient ∆ ≡ (M2
? −

M̂2)/M̂. There are two solutions to P2 = M2
?, one of

which is irrelevant since it scales as v · k ∼ M̂. For the
other we find

v · k = −M̂ +

√
M̂2 + M̂∆ − k2

>

=
∆

2
−

∆2 + 4k2
>

8M̂
+ O(δ3), (14)

where we expanded in δ in the second line, using ∆ ∼

k> ∼ Mδ. Expanding ∆ =
∑

i=1 ∆(i) into terms of order
g2i, we deduce the bilinear terms in (12) from the dis-
persion relation (14). Gauge invariance of the effective
Lagrangian implies that the leading soft-photon inter-
actions can be obtained from the bilinear terms by re-
placing ∂ → Ds. The gauge invariance of the matching
coefficient follows from the invariance of the unstable-
particle pole M?.

In the underlying theory the full renormalized prop-
agator of the unstable particle is given by i(s − M̂2 −

Π(s))−1, where −i Π(s) corresponds to the amputated
1PI graphs including counterterms. Comparing this to
(13) and expanding Π(s) around M̂2 and in the number
of loops in the form Π(s) = M̂2 ∑

k,l δ
l Π(k,l), where it is

understood that Π(k,l) ∼ g2k, we obtain

∆ = M̂ Π(1,0) + M̂
(
Π(2,0) + Π(1,1)Π(1,0)

)
+ . . . . (15)

Π(1,0) and Π(2,0) + Π(1,1)Π(1,0) (but not Π(2,0) and Π(1,1)

separately) are infrared-finite, which justifies the inter-
pretation of ∆ as a short-distance coefficient. Explicit
results for ∆(1) and ∆(2) in the MS and pole renormal-
ization scheme can be found in [3]. Here we only note
that in the pole scheme (M̂ ≡ M), we have ∆ = −iΓ, in
which case the residual “mass” is purely imaginary and
coincides with the on-shell width.

Each term in LHSET can be assigned a scaling power
in δ. Since Ds ∼ k ∼ Γ ∼ Mδ and ∆(1) ∼ Mg2 ∼

Mδ, both terms in the first line of (12) are of equal size
and leading terms. The unstable-particle propagator is
therefore

i
2M̂(v · k − ∆(1)/2)

, (16)

which corresponds to a fixed-width prescription. The
linearity of the propagator in the (residual) momentum
makes calculations in the effective theory particularly
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simple. The fact that only ∆(1) appears in the leading-
order Lagrangian proves that only the two-point func-
tion in the original theory needs to be resummed by in-
cluding the one-loop self-energy into the unperturbed
Lagrangian. No higher-point functions require resum-
mation, which is intuitively obvious, since the origin
of the long-distance scale is associated with a single-
particle effect, the life-time of the resonance.

In momentum space the propagator (16) of the φv

field scales as 1/δ. Hence, because
∫

d4k counts as δ4,
the soft scalar field φv(x) scales as δ3/2. It follows that
the terms in the second line of (12) scale as δ5. Being
suppressed by one power in δ or g2 relative to the first
line, they must be included only in a calculation of the
line-shape with NLO precision. Finally, since Aµ

s scales
as δ and the soft fermion fields scale as δ3/2, the terms
in the last line of (12) scale as δ4 and represent leading
interactions among the soft, massless modes. By adding
further terms the Lagrangian can be improved to any ac-
curacy desired.

Next, we turn to the construction of the effective La-
grangian, L±, associated with the energetic fermions.
The interactions of collinear modes with themselves and
with soft modes are described within soft-collinear ef-
fective theory (SCET) [16, 17, 18, 19]. The coupling
of collinear modes to the scalar field φv, and among
collinear fields with different directions produces off-
shell fluctuations, which are not part of the effective
Lagrangian. The momenta associated with generic
collinear fields ψc1 and χ̄c2 do not add up to a momen-
tum of the form P = Mv + k. This kinematic con-
straint is implemented by adding the production and
non-resonant operators, O(k)

p and O(k)
nr , respectively, as

external “sources” for the specific process. The line-
shape is then given by the correlation function (11).

Alternatively, the dynamical hard-collinear modes
can be integrated out in a second matching step, in
which the collinear functions (labelled “C” in Figure 1)
appear as matching coefficients of (non-local) operators.
The new effective Lagrangian contains an “external-
collinear” electron mode with momentum M̂n−/2 + k,
which describes the remaining soft fluctuations k ∼ δ
around the fixed large component. Similar to the reso-
nance field, we extract the large component and define
ψn− (x) ≡ eiM̂/2 (n−x) P+ ψc1(x), where P+ projects on the
positive frequency part of ψc1. Adding the correspond-
ing field with n− and n+ exchanged for the neutrino, the
soft interactions of the external-collinear field are given
by

L± = ψ̄n−in−Ds
6n+

2
ψn− + χ̄n+

in+∂
6n−
2
χn+

. (17)

Figure 2: Scalar self-energy correction to the forward-scattering am-
plitude.

at leading power.
With the external-collinear modes we can implement

the production and non-resonant sources as interaction
terms in Lint. At NLO the relevant terms read

Lint = C y φvψ̄n−χn+
+ C y∗φ†v χ̄n+

ψn−

+ D
yy∗

M̂2

(
ψ̄n−χn+

)(
χ̄n+

ψn−
)
, (18)

where C = 1+O(α) and D are the matching coefficients.
The two lines correspond to the two reduced diagram
topologies in Figure 1. We note that the effective La-
grangian is not manifestly hermitian, since it describes
the decay of the scalar. Nevertheless, it generates a uni-
tary time evolution, since it reproduces by construction
the unitary underlying theory to the specified order in
the expansion in δ.

The external fields scale as δ3/2. Thus, an insertion
of a φψχ operator results in

∫
d4x φvψ̄n−χn+

∼ δ1/2. The
forward-scattering amplitude requires two insertions of
this operator. Accounting for the scaling of the exter-
nal state 〈ν̄e−| ∼ δ−1, we find T (0) ∼ g2/δ for the am-
plitude at leading order, which is the expected result.
The four-fermion operator is suppressed in δ and results
in a contribution of order g2 to T . Thus, to compute
the NLO correction T (1) we need C(1), the O(g2) con-
tribution to the matching coefficient C, while D is only
needed at tree level. The matching coefficients are ob-
tained from the hard contributions to the corresponding
on-shell three- and four-point functions in the full the-
ory. I refer to [3] for the precise matching equation as
well as the explicit results.

2.3. Example diagram
It is instructive to discuss how the self-energy cor-

rection to the intermediate scalar in the full theory, see
Figure 2, is represented in the effective description. We
first separate the hard and soft contributions the one-
loop self-energy, Π(s) = Πh(s) +Πs(s), and then expand
the hard part Πh(s) = M̂2 ∑

l δ
l Π(1,l). The soft part is

reproduced by the effective theory self-energy. The first
term Π(1,0) in the hard expansion is gauge-invariant and
contributes to ∆(1) as discussed before. This term is al-
ready relevant to the leading-order line-shape. The next
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term Π(1,1) cancels one of the adjacent scalar propaga-
tors, such that the self-energy correction merges with
the local production vertex. Π(1,1) is gauge-dependent.
The gauge dependence cancels with the vertex diagram
to produce a gauge-independent NLO hard-matching
coefficient C(1). Continuing in this way, we find that
Π(1,2) contributes to the one-loop matching coefficient
D(1) of the four-fermion operator

(
ψ̄n−χn+

)(
χ̄n+

ψn−
)
, be-

cause the scalar propagators to the left and right are both
cancelled. The contribution is again required to ob-
tained a gauge-invariant one-loop matching coefficient
[3], though it is already a NNLO term for the line-shape.

This example illustrates the power of the effective
field theory method. It automatically breaks a diagram
into different pieces and organizes them into gauge-
invariant objects. The power-counting associated with
the Lagrangian allows one to identify the terms relevant
for a specified accuracy before any explicit calculation
needs to be performed.

2.4. Line-shape at next-to-leading order

Our goal is to carry out this programme for the
forward-scattering amplitude T (0) +T (1) at NLO, where
T (0) sums up all terms that scale as (g2/δ)n ∼ 1 and
T (1) contains all terms that are suppressed by an addi-
tional power of g2 or δ. At leading order there is only
one diagram, involving two three-point vertices and one
resonant scalar propagator. We get

iT (0) =
−i yy∗

2M̂D
[ū(p)v(q)] [v̄(q)u(p)], (19)

where we definedD ≡
√

s − M̂ − ∆(1)/2. The inclusive
line-shape is related to T (0) by σ = ImT (0)/s through
the optical theorem. The above expression gives a Breit-
Wigner distribution in

√
s.

In the effective theory there are three classes of
diagrams that contribute to T (1), corresponding to
hard, hard-collinear and soft contributions. The hard-
collinear corrections to the external lines lead to scale-
less integrals and vanish. The hard corrections consist
of a propagator insertion [∆(1)]2/4− M̂∆(2), a production
vertex insertion C(1), and a four-point vertex diagram
due to the (ψ̄χ)(χ̄ψ) operator inLint, as shown in the up-
per diagrams of Figure 3. The sum of these diagrams
reads

iT (1)
h = iT (0)×

2C(1)−
[∆(1)]2

8DM̂
+

∆(2)

2D
−
D

2M̂

. (20)

The soft-photon one-loop corrections (lower set of di-
agrams in Figure 3) computed in the effective theory

Figure 3: Hard (upper) and soft (lower diagrams) contributions to
T (1).

result in

iT (1)
s = iT (0) ×

g2

(4π)2

4L2 − 4L +
5π2

6

 (21)

with L = ln (−2D/µ). The partonic line-shape is ob-
tained after subtracting the initial-state collinear singu-
larity and taking the imaginary part. The partonic line-
shape must then be convoluted with the electron distri-
bution function.

We note the simplicity of the result, which is a conse-
quence of the fact that the complete calculation is bro-
ken into separate single-scale calculations by factoriz-
ing the hard and soft regions. The NLO correction leads
to a distortion of the line-shape relative to the Breit-
Wigner form, which in non-inclusive situations can de-
pend on the final state. Fitting a measured line-shape
to the Breit-Wigner form rather than the true shape pre-
dicted by theoretical calculations leads to errors in mass
determinations. In the present toy model, choosing the
pole mass M = 100 GeV (such that the MS mass is
M̂ = 98.8 GeV at LO and M̂ = 99.1 GeV at NLO) and
couplings g2/(4π) = |y|2/(4π) = 0.1 to mimick the pa-
rameters of electroweak gauge bosons, the error would
be of order 100 MeV.

Figure 4 shows the leading-order partonic line-shape
in the effective theory and the tree-level (order α2) cross
section off resonance in the full theory. The two re-
sults agree in an intermediate region where both calcu-
lations are valid. This allows to obtain a consistent LO
result for all values of

√
s. The figure also shows the

NLO line-shape for the numerical values given above.
In order to obtain an improved NLO result in the en-
tire region of

√
s, the NLO line-shape would have to be

matched to the NLO off-resonance cross section in the
full theory.

The method discussed here makes NNLO line-shape
calculations in 2 → 2 scattering possible with present
techniques. An outline of such a calculation has been
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Figure 4: The line-shape (in GeV−2) in the effective theory at LO
(light grey/magenta dashed) and NLO (light grey/magenta) and the
LO cross section off resonance in the full theory (dark grey/blue
dashed) as a function of the centre-of-mass energy (in GeV). Figure
from [2].

given in [3], though no complete calculation has been
performed to date.

3. Pair production near threshold

I reviewed in some detail the case of the line-shape,
since it serves well to illustrate the general framework
of unstable-particle effective theory. However, some of
the more interesting results concern pair production of
unstable particles, specifically the W bosons and top
quarks, near threshold. In e+e− collisions very precise
measurement of the masses of these particles can be ob-
tained from a threshold scan.

The threshold dynamics is determined by the inter-
play of the strength of the electromagnetic (W bosons)
or colour (top quarks) Coulomb force and the size of the
decay width of the particle. The small parameters are

δ ≡
Γ

M
, v2 ≡ (

√
s − [2M + iΓ])/M, (22)

and the coupling α = g2/(4π). For W bosons, ΓW ∼

MWαEW and therefore the effective strength of the
Coulomb force is αem/v ∼

√
δ � 1. This leads to an en-

hancement, but the Coulomb force is never O(1), and no
resummation is needed [20]. The rapid decay of the W
boson prevents the formation of any visible W+W− reso-
nance. The situation is different for top quarks, since the

Coulomb force is generated by QCD, while the decay
still occurs through the electroweak interaction. Count-
ing αs ∼ α2

EW, we now find αs/v ∼ 1. Diagrammati-
cally, ladder diagrams that contain these enhanced terms
must be summed to all orders in perturbation theory,
which generates toponium bound-states in the spectral
functions. Since the characteristic energy near thresh-
old E ∼ Mv2 is of order Γ, the bound-states appear as
broad resonances, of which only the first one leaves a
distinctive feature in the tt̄ cross section [21, 22].

In the following I review results for W and top pair
production near threshold obtained within the effective
field theory approach, leaving out all the technical de-
tails that can be found in the original papers.

3.1. W bosons

This subsection summarizes results from [23, 24].
We consider the process e−e+ → µ−ν̄µud̄ X with centre-
of-mass energy

√
s = 160...170 GeV, where it is domi-

nated by a W+W− intermediate state near threshold with
subsequent semi-hadronic decay. The inclusive cross
section is extracted from specific cuts of the forward
amplitude

σ̂ =
1
s

ImA(e−e+ → e−e+)|µ− ν̄µud̄, (23)

which also includes diagrams with only a single internal
W line. We perform a “QCD-style” calculation of the
“partonic” cross section σ̂ with massless electrons in
the MS scheme, and convolute it with the MS electron
distribution function:

σ(s) =

∫ 1

0
dx1dx2 fe/e(x1) fe/e(x2) σ̂(x1x2s). (24)

The MS electron distribution function depends on me,
but not on

√
s, M, Γ.

In the effective field theory (EFT) the W bosons are
described by two non-relativistic three-vector fields Ωi

a,
where a = ± refers to the charge of the W. The HSET
Lagrangian relevant to a single (scalar) unstable parti-
cle is replaced by the PNRQED Lagrangian [25], gen-
eralized to the case of an unstable vector particle. The
relevant terms are

LPNRQED =
∑
a=∓

Ω†ia

iD0
s +

~∂2

2MW
−

∆

2

 Ωi
a + Ω†ia

(~∂2 − MW∆)2

8M3
W

Ωi
a

 +

∫
d3~r

[
Ω
†i
−Ωi
−

]
(x + ~r )

(
−
αem

r

) [
Ω
† j
+ Ω

j
+

]
(x). (25)
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Figure 5: Successive EFT approximations: LO (long-dashed/blue),
N1/2LO (dash-dotted/red) and NLO (short-dashed/green). The
solid/black curve is the full Born result computed with Whizard/

CompHep. The N3/2LO EFT approximation is indistinguishable from
the full Born result on the scale of this plot. Figure from [23].

The master formula for the forward amplitude A co-
incides with (11), but the production and non-resonant
operators are now of the form

O(k)
p = C(k)

p

(
ēc2,L/Rγ

[in j]ec1,L/R

) (
Ω
†i
−Ω
† j
+

)
, (26)

O
(k)
nr = C(k)

nr (ēc1Γ1ec2 )(ēc2Γ2ec1 ), (27)

with Γ1, Γ2 Dirac matrices, a[ib j] ≡ aib j + a jbi, and ~n
the unit-vector in the direction of the incoming electron
three-momentum.

Due to the 1/v enhancement of electromagnetic
Coulomb exchange, the systematic expansion ofA goes
in powers of

√
δ. Also, the non-resonant term ap-

pears as such a “N1/2LO” correction, since the lead-
ing imaginary parts of C(k)

nr are proportional to α3, while
A ∼ α2

√
δ.3

The EFT constructs an expansion in Γ/M and (
√

s −
2M)/M of the full theory Born cross section. Before
turning to radiative corrections it is instructive to com-
pare successive terms in this expansion to the full Born
result computed numerically (using Whizard [26] and
CompHep [27]). This is shown in Figure 5. The LO
non-relativistic approximation overestimates the true re-
sult. The N1/2LO non-resonant correction yields a
(nearly) constant, negative term and provides already
good agreement close to the nominal threshold at

√
s ≈

161 GeV. To extend the approximation in a wider re-
gion around the threshold, it is necessary to include all
terms up to N3/2LO.

3The factor
√
δ arises from the leading-order EFT matrix element

and corresponds to the phase-space suppression near threshold.

Figure 6: One-loop diagram for the hard-matching coefficient (left)
and a soft NLO contribution to the forward-scattering amplitude in
the effective theory (right).

While constructing an expansion of the Born cross
section when an exact, numerical result is readily avail-
able, appears as an unnecessary complication, the com-
putation of the NLO radiative correction in unstable-
particle effective theory [23] is remarkable simple com-
pared to the corresponding calculation in the complex-
mass scheme [10, 28]. The most complicated part is the
computation of the NLO matching coefficient of the op-
erator (26), which, however, is a standard one-loop cal-
culation. A representative diagram is shown in Figure 6
left. The diagram on the right displays a soft, “non-
factorizable” NLO correction to the two-point function
of production operators in (11), and results again in a
simple expression, similar to (21). A comparison with
the complex-mass scheme calculation and the double-
pole approximation (DPA), including QCD corrections
and initial-state radiation is given in the following ta-
ble.4 The numerical difference of 1% between the EFT
and full ee4f results is presumably in part due to the
N3/2LO correction associated with the NLO matching
coefficient of O(k)

nr , which is implicitly contained in the
NLO full ee4f calculation.

σ(e−e+ → µ−ν̄µud̄ X)(fb)
√

s [GeV] Born (SM) EFT full ee4f DPA
161 107.06(4) 117.38(4) 118.77(8) 115.48(7)
170 381.0(2) 399.9(2) 404.5(2) 401.8(2)

We can now estimate the theoretical uncertainty in
the W mass determination from a threshold scan. Fig-
ure 7 shows κ = σ(s,MW + δMW )/σ(s,MW ) for
MW = 80.377 GeV and different values of δMW as
function of the cms energy. The relative change in
the cross section is shown as dashed lines for δMW =

±15,±30,±45 MeV. The shape of these curves shows
that the sensitivity of the cross section to the W mass is
largest around the nominal threshold

√
s ≈ 161 GeV, as

expected, and rapidly decreases for larger
√

s. (The loss
in sensitivity is partially compensated by a larger cross
section, implying smaller statistical errors of the antici-
pated experimental data.) The shaded areas provide an

4The “full ee4f” column refers to the erratum of [28].
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Figure 7: W-mass dependence of the total cross section. All the cross
sections are normalized to σ(s,MW = 80.377 GeV). See text for ex-
planations. Figure from [23].

estimate of the uncertainty from uncalculated N3/2LO
terms. The inner band is associated with the interfer-
ence of single Coulomb exchange with one-loop hard
or soft corrections, which are genuine NNLO correc-
tions in other schemes. The outer band accounts for the
non-resonant term already mentioned above. Finally,
the line marked “ISR” estimates ambiguities in the im-
plementation of initial-state radiation. This represents
the largest current uncertainty. In order to obtain a com-
petitive determination of MW , one eventually needs a
more accurate computation of the electron distribution
function.

Since this is not a fundamental problem and since
the full theory NLO ee4f calculation is available, the
accuracy of the theoretical prediction is limited by the
N3/2LO terms in the δ expansion, which correspond
to two-loop corrections (in the complex-mass scheme).
Some of the diagrams together with their EFT represen-
tation are shown in Figure 8. These consist of mixed
hard-Coulomb corrections (first column), interference
of Coulomb exchange with soft and collinear radiative
corrections (2nd and 3rd column, respectively), and a
correction to the electromagnetic Coulomb potential it-
self. These genuine higher-order corrections have been
computed [24] and were found to be below 0.5%, lead-
ing to shifts of W mass of less than 5 MeV.

Up to now, we considered the total cross section for
the flavour-specific final state µ−ν̄µud̄ X. Since experi-
mentally certain cuts must be applied, it would be desir-
able to compute directly the cut cross section in the EFT.
A framework to implement arbitrary cuts while main-

Figure 8: Some NNLO diagrams that count as N3/2LO in the δ expan-
sion and their EFT representation (upper line).
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Figure 9: Comparison of the Born cross section in the full SM at
√

s =

161 GeV computed with WHIZARD (red dots) with the effective-
theory result for the loose-cut implementation (dashed blue curve) and
the tight-cut implementation (solid black curve). Figure from [24].

taining an expansion in the power-counting parameter δ
is not available and probably difficult to achieve. The
specific case of invariant-mass cuts |M2

fi f j
− M2

W | < Λ2

on the W-decay products has been considered in [24].
The implementation depends on how Λ scales with the
parameter δ. For loose cuts, Λ ∼ MW . Since by as-
sumption the virtualities in the EFT are at most of or-
der MΓ ∼ Mδ, the loose cut does not affect the EFT
diagrams. However, the hard-matching coefficients are
modified and acquire a dependence on Λ in addition to
the other short-distance scales. The situation is reversed
for tight cuts with Λ ∼ MΓ ∼ M

√
δ. The tight cut cuts

into the (approximate) Breit-Wigner distribution of the
single-W invariant mass distribution and therefore must
be applied to the calculation of the EFT loop integrals.
On the other hand, it eliminates off-shell contributions,
and hence the short-distance coefficient C(k)

nr of the non-
resonant four-electron operator (27) vanishes. Figure 9
shows good agreement of the effective-theory calcula-
tion of the cut Born cross section with the numerical
result from WHIZARD in the regions where the respec-
tive loose/tight-cut counting rule is appropriate.
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Figure 10: Top quark pair production cross section near threshold,
normalized to 4πα2

em/(3s) at NNLO in non-relativistic, resummed
perturbation theory in the PS mass scheme [29]. The width of the
band reflects the theoretical uncertainty estimated from scale variation
in the indicated range. mt,PS(20 GeV) = 171.5 GeV, Γt = 1.33 GeV.

3.2. Top quarks
The strong Coulomb attraction of the coloured top

quarks, when their relative velocity is small near thresh-
old, requires the resummation of certain QCD correc-
tions to all orders in perturbation theory. A system-
atic formalism employs a sequence of matching steps
to define hard matching coefficients and potentials in
non-relativistic effective field theory. The ingredients
required up to the third order in non-relativistic pertur-
bation theory are reviewed in [30]. Figure 10 shows the
second-order (NNLO) result from [31], which exhibits a
toponium resonance slightly below the nominal thresh-
old. Note the order counting here is such that v ∼ αs

defines the expansion parameter. The top-quark width
Γt/mt ∼ αEW ∼ α

2
s is second-order in this counting.

QCD predictions of the top-pair production cross sec-
tion such as the one shown in the figure are based on the
calculation of QCD correlation functions with the sub-
stitution E =

√
s − 2mt → E + iΓt to account for the

top-quark width [21, 22]. This prescription corresponds
to computing the first (resonant) term in (11) with O(k)

p
given by the non-relativistic top-quark (axial-) vector
current, and with an effective Lagrangian that accounts
for the width through ∆ = −iΓt in the first bilinear term
in (25) (adapted to quarks), but not in the further kinetic
corrections.

The limitations of this approximation manifest them-
selves within the (NR)QCD calculation itself. The cur-
rent correlation function G(E) exhibits an uncancelled
ultraviolet divergence from an overall divergence of the
form [δG(E)]overall ∝ αsE/ε in dimensional regulariza-
tion (d = 4 − 2ε) [32]. Since E acquires an imaginary
part Γt ∼ mtαEW, the divergence survives in the cross
section,

Im [δG(E)]overall ∝ mt ×
αsαEW

ε
, (28)

and appears first at NNLO (since at LO, G(E) ∼ v ∼ αs).
A consistent calculation therefore requires that one con-
siders the process e+e− → W+W−bb̄ within unstable-
particle effective theory including the effects of off-shell
top quarks and processes that produce the W+W−bb̄ fi-
nal state with no or only one intermediate top-quark
line. The two terms of (11) can be identified with

σe+e−→W+W−bb̄ = σe+e−→[tt̄]res (µw)︸            ︷︷            ︸
pure (NR)QCD

+σe+e−→W+W−bb̄nonres
(µw). (29)

Both terms separately have a “finite-width scale depen-
dence” related to the uncancelled 1/ε poles, and only
the sum is well-defined. For consistency, both terms
have to be defined with the same (dimensional) regular-
ization prescription.

While the explicit finite-width scale dependence is
seen first at NNLO, the leading non-resonant contribu-
tion already appears at NLO. Somewhat surprisingly,
this was realized only recently. At this order the match-
ing coefficient of the non-resonant operator is equiva-
lent to the dimensionally regulated e+e− → bW+ t̄ pro-
cess with Γt = 0, expanded in the hard region around

s = 4m2
t . The corresponding calculation has been

performed in two independent ways [33, 34]. In [33]
invariant-mass cuts mt − ∆Mt ≤ Mt,t̄ ≤ mt + ∆Mt on the
decay products of the (anti-) top quark can be included
following the method discussed above for W bosons.

It is convenient to represent the calculation of the cut
two-loop diagrams contributing to e+e− → bW+ t̄ in the
form∫ m2

t

∆2
dp2

t (m2
t − p2

t )
d−3

2 Hi

( p2
t

m2
t
,

M2
W

m2
t

)
(30)

leaving the integration over p2
t ≡ (pb + pW+ )2 to the end.

The lower limit depends on the invariant-mass cut and
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Figure 11: Hard, off-shell top diagram contribution to e+e− → bW+ t̄,
which leads to a linear infrared divergence.
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Figure 12: Relative sizes of the non-resonant corrections with re-
spect to the tt̄ LO cross section in percent: NNLO singular terms
σ(2)

non−res/σ
(0)
tt̄ (upper blue lines) and NLO σ(1)

non−res/σ
(0)
tt̄ (lower black

lines). Solid (dashed) lines correspond to an invariant-mass cut ∆Mt =

35 GeV (∆Mt = 15 GeV). Figure from [35]. Here the top pole mass
mt = 172 GeV is used as input parameter.

is given by ∆ = M2
W , when no cut is applied. The finite-

width infrared divergence of the non-resonant match-
ing coefficient that cancels the corresponding ultravio-
let divergence of the non-relativistic current correlation
function appears as an endpoint divergence of the inte-
gral above as p2

t → m2
t approaches the on-shell value.

At NLO, the divergence arises only from the diagram
shown in Figure 11. The integrand behaves as

H1

( p2
t

m2
t
,

M2
W

m2
t

) p2
t→m2

t
→ const ×

1
(m2

t − p2
t )2

, (31)

which leads to a divergent integral (30) in four dimen-
sions. Dimensional regularization sets such linearly di-
vergent integrals to finite numbers, which explains the
absence of explicit µw scale dependence at this order.

Similar to the case of W-boson pair production, the
leading non-resonant contribution to the top-pair cross
section is a nearly energy-independent, negative correc-
tion, which amounts to a few percent above the topo-
nium peak, and to around 20% a few GeV below the
peak. With an invariant-mass cut the NLO correction
is shown as the lower (black) solid and dashed lines in
Figure 12.

Since the largest sensitivity to the top-quark mass
comes from the steep rise of the cross section below the
peak, the non-resonant contributions at NLO and even
NNLO are essential. The NNLO terms correspond to
three-loop cut diagrams. The complete calculation has
not yet been performed. However, in the presence of an
invariant-mass cut satisfying Γt � ∆Mt � mt, the sin-
gular terms as mt/∆Mt → ∞ have been extracted in two
different ways [35, 36].5 The calculation of [35], which
starts from the non-resonant side, also confirms explic-
itly the cancellation of 1/ε finite-width divergence poles
with the non-relativistic contributions. The upper set of
lines (blue solid and dashed) in Figure 12, shows that
the NNLO correction is only about half as large than
the NLO one.

4. Summary and further results

In this article I reviewed the treatment of unstable par-
ticles in perturbative quantum field theory based on the
scale hierarchy Γ � M. Once scale separation is taken
as the guiding principle, and an effective field theory
is constructed, gauge-invariance and the consistency of
the all-order resummation is automatic. The effective
theory describes the scattering processes that leave the
resonance close to its complex mass shell. Some aspects
are therefore closely related to other effective theories
that describe heavy particles close to their mass-shell.
The concrete applications considered so far can be de-
scribed by the master formula (11), which captures res-
onant production and decay, as well as all non-resonant
“background” processes.

The effective theory approach appears most fruitful,
when it is applied to inclusive quantities, where it leads
to particularly simple, even completely analytic results;
to processes that require other resummations on top of
the self-energy of the unstable particle; and to processes
where high precision is required, beyond NLO accuracy,
for which automated tools are not yet available. The
line-shape and pair production near threshold discussed
here are examples of such situations.

As with other effective theories it is more difficult to
predict differential distributions, unless the scales as-
sociated with the observable can be assigned a unique
scaling with respect to the small parameters that de-
fine the EFT expansion. To circumvent this problem,
a hybrid approach has been followed in [38, 39], ap-
plicable to NLO calculations, in which the simplifica-

5Further, the leading term in an expansion in the parameter ρ =

1 − MW/mt has been obtained in [34] and [37], with different results.
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tions provided by the EFT are used in the virtual cor-
rections (which have tree kinematics), while real emis-
sion is computed in the full theory with the complex-
mass prescription. A fully differential calculation has
been done recently for the mixed O(αemαs) corrections
to Drell-Yan production [40] employing a mixture of di-
agrammatic and EFT-inspired techniques.
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