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Abstract

We report on determinations of the running masses for charm- and bottom-quarks from deep-inelastic scattering
reactions and for the top-quark from hadro-production of top-quark pairs. The running masses in the MS scheme can
be extracted with good precision at next-to-next-to-leading order in QCD. In the global fits to data the full correlations
of the extracted mass parameters with the parton distributions in the proton and with the strong coupling constant
αs are kept. For charm- and bottom-quarks the method provides complementary information on these fundamental
parameters from hadronic processes with space-like kinematics. The measured top-quark mass is confronted with the
Monte Carlo top-quark mass parameter determined from a comparison to events with top-quark decay products. The
Monte Carlo mass is not identical with the pole mass. Its translation to the pole mass scheme introduces an additional
uncertainty of the order of 1 GeV.
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1. Introduction

Quark masses are fundamental parameters of the
gauge theory of the strong interactions, Quantum Chro-
modynamics (QCD). They are, however, not directly
observable due to confinement. Quark masses appear in
the theory predictions for cross sections or other mea-
surable quantities and, as such, they are subject to the
definition of a renormalization scheme once quantum
corrections at higher orders are included. In many QCD
applications the pole mass is the conventional scheme
choice. The heavy-quark’s pole mass mpole

q is introduced
in a gauge invariant and well-defined way at each finite
order of perturbation theory as the location of the sin-
gle pole in the two-point correlation function. The pole
mass scheme is, in fact, inspired by the definition of the
electron mass in Quantum Electrodynamics. For heavy
quarks, however, this has its short-comings [1, 2], be-
cause due to confinement quarks do not appear as free
particles in asymptotic states in the S -matrix. There-
fore, the pole mass mpole

q must acquire non-perturbative

corrections, because in the full theory the quark two-
point function does not display any pole. This leads to
an intrinsic uncertainty in the definition of mpole

q of the
order of ΛQCD related to the renormalon ambiguity [3].

Fortunately, one can consider alternative definitions
based on the (modified) minimal subtraction in the MS
scheme, which realizes the concept of a running mass
mq(µ) at a scale µ of the hard scattering in complete
analogy to the treatment of the running strong coupling
αs(µ). As a benefit, predictions for hard scattering cross
sections in terms of the MS mass display better con-
vergence properties and greater perturbative stability at
higher orders.

More generally, one can define so-called short-
distance masses mq(R, µ), where R is a scale associated
with the scheme. The MS mass is then just one exam-
ple of a short-distance mass mq(R, µ) with R taken at
the scale R ∼ mq. Other schemes define a so-called
1S mass [4, 5] through the perturbative contribution to
the mass of a hypothetical 3S 1 toponium bound state
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or a “potential-subtracted” (PS) mass [6]. As alterna-
tive renormalization schemes, all short-distance masses
mq(R, µ) can be related to the pole mass mpole

q through a
perturbative series,

mpole
q = mMSR

q (R, µ) + δmq(R, µ) , (1)

δmq(R, µ) = R
∞∑

n=1

n∑
k=0

ank α
n
s(µ) lnk

(
µ2

R2

)
, (2)

with coefficients ank known to three loops in QCD [7, 8].
As quark masses are not physical observables the de-

termination of mq relies on the comparison of a theory
prediction σth(mq) for a cross section with the exper-
imentally measured value σexp for a given observable
and kinematics as the best fit solution to the equation
σexp = σth(mq). The accuracy of this approach is intrin-
sically limited by the sensitivity S of σth(mq) to mq,∣∣∣∣∣∆σσ

∣∣∣∣∣ = S ×

∣∣∣∣∣∣∆mq

mq

∣∣∣∣∣∣ . (3)

Thus, for a given experimental error or a theoretical un-
certainty ∆σ on the cross section, the greater the sensi-
tivity S the better the accuracy for mq can be achieved.

In this review we discuss several determinations of
the running masses in the MS scheme for charm- and
bottom-quarks from deep-inelastic scattering (DIS) re-
actions and for the top-quark from hadro-production of
top-quark pairs, which have been performed within the
Collaborative Research Center/Transregio 9 (CRC/TR
9). We briefly describe the theoretical prerequisites
and the global fits to data for the extraction of the run-
ning masses at next-to-next-to-leading order (NNLO) in
QCD. We stress, that is is important to keep the full
correlations of the extracted mass parameters with other
non-perturbative parameters entering the cross sections
predictions, such as the parton distribution functions
(PDFs) in the proton and the reference value of the
strong coupling constant αs(MZ).

The results reported here are quoted in the 2014 Re-
view of Particle Physics [9] of the particle data group
(PDG) and the presentation in this article follows previ-
ous reports [10, 11] on the subject with updates.

2. Charm-quark mass

Cross sections for the production of heavy-quarks in
DIS are particularly well suited to confront the quark
mass dependence of theoretical predictions in pertur-
bative QCD with experimental measurements in space-
like kinematics. For the production of charm-quarks

in neutral (NC) or charged current (CC) DIS there ex-
ists very precise data from the HERA collider and from
fixed-target experiments.

In QCD the DIS heavy-quark structure functions Fk

which parametrize the hadronic cross section are subject
to the standard factorization

Fk(x,Q2,m2
q) = (4)∑

i=q,q̄,g

[
fi(µ2) ⊗Ck,i

(
Q2,m2

q, αs(µ2)
)]

(x) ,

where k = 1, 2, 3. Q2 and x are the usual DIS kinemati-
cal variables and mq is the heavy-quark (pole) mass. The
perturbative coefficient functions Ck,i are known for CC
to next-to-leading order (NLO) [12, 13] and at asymp-
totic values of Q2 � m2

q even to NNLO [14, 15, 16].
For NC the coefficient functions have been computed
approximately to NNLO [17, 18, 19, 20].

In eq. (4) we also display all dependence on the other
non-perturbative parameters, i.e. the PDFs fi for light
quarks and gluons as well as the strong coupling con-
stant αs. The conversion to the running mass definition
follows the standard procedure for changing the renor-
malization condition, i.e. mq → mq(µ) at the respective
order in perturbation theory. This has been discussed in
refs. [21, 22] and the specific implementation for DIS
heavy-quark production in eq. (4) has been presented in
refs. [23, 24].

The parametric dependence of the DIS structure func-
tions Fk in eq. (4) on mq can be used for a determination
of the heavy-quark mass. The sensitivity of this proce-
dure relates directly to the corresponding uncertainty on
the measurements of Fk, see eq. (3). For charm produc-
tion in NC DIS the nucleon structure function F2 dis-
plays a sensitivity S ∼ 1.5 which implies that an exper-
imental accuracy of 4% for F2 translates into an uncer-
tainty of 3% for the charm-quark mass [23]. With the
precision of current DIS data for charm production this
suggests an error on mc(mc) of O(few)% as the ultimate
precision in the approach based on inclusive structure
functions.

Starting from eq. (4) we have extracted the MS
charm-quark mass mc(mc) in several phenomenologi-
cal studies [25, 26] (and variants [24, 27, 28]) based on
world data for deep-inelastic scattering and fixed-target
data as well as data from the Large Hadron Collider
(LHC) for the Drell-Yan process The use of the run-
ning mass in global analyses in the fixed-flavor num-
ber scheme (FFNS) (with n f = 3) is twofold. It allows
for a comparision of the extracted mass parameter to
the world average published by the PDG as a consis-
tency check. In addition, due to better convergence and
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greater perturbative stability of the theoretical predic-
tions, it improves the uncertainty of heavy-quark PDFs
in a global fit within the FFNS when the running mass
scheme is applied.
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Figure 1: The combined HERA data on the reduced cross section for
the open charm production [29] versus x at different values of Q2 in
comparison with the result of the analysis of ref. [28] at NLO (dashed
line) and NNLO (solid line). A variant of the fit based on the option
(A+B)/2 of the NNLO Wilson coefficients of ref. [19], is displayed
for comparison (dotted line). (Figure from ref. [28])

We have obtained [28]

mc(mc) = 1.15 ± 0.04(exp) +0.04
−0.00(scale) GeV , (5)

at NLO

mc(mc) = (6)
1.24 ± 0.03(exp) +0.03

−0.02(scale) +0.00
−0.07(th) GeV ,

at NNLOapprox, approximate NNLO, in perturbation the-
ory. The quoted experimental uncertainty results from
the propagation of the statistical and systematic errors
in the data with account of error correlations whenever
available. The theoretical uncertainty is estimated from
the variation of the renormalization and factorization
scales by a factor of 1/2 and 2 around the nominal value
of

√
m2

c + κQ2, with κ = 4 for the NC and κ = 1 for the
CC case. For consistency it has been checked that differ-
ent scale choices do not deteriorate the statistical quality
of the fit. Counting the charm mass mc quoted in eqs. (5)
and (6) and the value of the strong coupling constant de-
termined to αs(MZ) = 0.1134 ± 0.0011 at NNLO [25],

the global fit relies on the same 27 correlated parame-
ters for PDFs as in the ABM11 analysis [25]. An ad-
ditional theoretical uncertainty estimated to 0.07 GeV
in eq. (6) arises from the incomplete knowledge of the
massive NNLO coefficient functions derived in ref. [19]
and parametrized as options A and B. The recent data
on DIS open charm production [29] is shown in fig. 1
and the value of mc(mc) in eq. (6) provides the best de-
scription of the data. With χ2 normalized by the number
of data points (NDP) the fit yields χ2/NDP = 61/52 for
the combined HERA charm data, cf. fig. 1.

Full control of the correlation with the PDFs is par-
ticularly important in order to check simultaneously the
sensitivity to the strange-quark PDF in the CC case, be-
cause due to the Born process W±s → c, the charm
mass parameter is correlated with strange-quark distri-
bution. A recent analysis of CC fixed-target data in
ref. [24] includes the NuTeV/CCFR data [30] together
with the new high statistics NOMAD [31] and CHO-
RUS data [32] into the fit. It has obtained [24]

mc(mc) = 1.222 ± 0.024 (exp.) GeV , (7)

which is consistent with eq. (6) and the one of the
ABM12 fit [26], but has a slightly improved experimen-
tal uncertainty due to the impact of the newly added
NOMAD and CHORUS data.

One has to compare the numbers in eqs. (5), (6) and
(7) with the world average of the PDG [9] quoted in
the MS scheme as mc(mc) = 1.275 ± 0.025 GeV, which
includes lattice computations or analyses of experimen-
tal data with time-like kinematics from e+e−-collisions,
e.g. with the help of QCD sum rules. It is therefore
interesting to note that the DIS results in eqs. (5), (6)
and (7) for hadronic processes with space-like kinemat-
ics are fully consistent with the PDG value, though with
a slightly larger overall uncertainty.

In order to understand at least one source of the larger
uncertainty, one should note that the QCD sum rules
analyses typically assume the Bethke world average for
the value of the strong coupling constant [33], which is
αs(MZ) = 0.1184 ± 0.0007 and therefore significantly
larger than the ABM11 result [25], see also [34] and
references therein. A recent determination from a char-
monium QCD sum rules analysis [35] (see also [36] for
an update) quotes a central value mc(mc) = 1.282 ±
0.024 GeV using the world average and parametrizes
separately the dependence of mc(mc) on the value of
αs(MZ). Using the ABM11 value αs(MZ) = 0.1134
instead one extracts from Table 15 in [35] a value of
mc(mc) = 1.262 ± 0.024 GeV, i.e. a systematic shift
downwards at the level on 1σ statistical uncertainty.
Similar findings have also been presented in [37]. This
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Figure 2: The values of mc(mc) obtained in the NLO and NNLO vari-
ants of the ABM11 fit with the combined HERA charm data [29] in-
cluded and the value of αs(MZ ) fixed. The position of the star displays
the result with the value of αs(MZ ) fitted [25]. (Figure from ref. [28])

indicates a potential bias with respect to the value of
the strong coupling constant in QCD sum rule analysis
from e+e−-collisions. Note that the DIS determinations
in eqs. (5), (6) and (7) account for the full correlation
of the dependence on mc and αs through a simultane-
ous fit of these parameters. The correlation of the fitted
value of mc with the strong coupling constant αs(MZ)
is shown in fig. 2 which demonstrates a remarkable sta-
bility of the charm-quark mass both at NLO and NNLO
for a variation of the value of αs(MZ) in a wide range.

3. Bottom-quark mass

At asymptotically large scales Q � mc,mb the gen-
uine DIS heavy-quark contributions in a FFNS with
n f = 3 grow as αs(Q2) ln(Q2/m2) and can be resummed
by means of standard renormalization group methods.
This procedure leads to so-called heavy-quark PDFs in
theories with effectively n f = 4 and n f = 5 light flavors,
which are the appropriate descriptions for processes at
LHC energies. The PDFs for charm- and bottom-quarks
in 4- and 5-flavor schemes are generated from the light
flavor PDFs in a 3-flavor FFNS as convolutions with
massive operator matrix elements (OMEs), see e.g. [38].
The uncertainty on heavy-quark PDFs is therefore di-
rectly related to the accuracy of the quark masses mc or

mb, which appear parametrically in the OMEs. This un-
certainty can be significantly reduced through the use of
the MS scheme, which, of course, has to be applied also
to the massive OMEs.

In the global fits of PDFs the heavy-quark masses
are free parameters, which can be supplemented by the
PDG constraint, though. In this way refs. [25, 26] have
generated charm PDFs with comparable uncertainties to
the one of ref. [38] (which has used the pole mass defini-
tion for mc). Using the value mb(mb) = 4.19± 0.13 GeV
the uncertainty of the resulting bottom-PDF is, however,
greatly reduced as shown in fig. 3. This improvement
has an impact on LHC phenomenology, e.g., by allow-
ing for precise predictions for the production of single-
top-quarks.
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Figure 3: The b-quark PDF uncertainties obtained in the ABM11
fit [25]. The dotted (red) lines denote the ±1σ band of relative un-
certainties (in percent) and the solid (red) line indicates the difference
in the central prediction resulting from the change of the mass scheme
and using mb(mb) = 4.19 ± 0.13 GeV. For comparison the shaded
(grey) area represents the uncertainties in the ABKM fit [38] which
has used pole masses. (Figure from ref. [25])

For long time the available DIS data on bottom-quark
production has displayed little sensitivity on the mass
parameter obstructing a direct determination of mb(mb).
Very recently, a new measurement of bottom production
in DIS at HERA has been released [39]. Using the meth-
ods of ref. [23], this has allowed for a first measurement
of the bottom-quark mass mb(mb) in a DIS scattering
reaction. Ref. [39] reports

mb(mb) = 4.07 ± 0.15(exp) +0.08
−0.05(th) GeV , (8)
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at NLO, which is in very good agreement with the world
average of the PDG [9] quoted in the MS scheme as
mb(mb) = 4.18±0.03 GeV. Using the results of [25, 26]
a determination of mb(mb) at NNLO is forthcoming.

4. Top-quark mass

Since the discovery of the top-quark almost 20 years
ago the mass of the heaviest elementary particle cur-
rently known has been measured with an ever increas-
ing and, by now, with unprecedented precision. The
top-quark mass is a fundamental parameter of the Stan-
dard Model (SM) and the precise value is indispensable
for predictions of cross sections at the LHC. Moreover,
in the absence of direct evidence for new physics be-
yond the SM, precision theory predictions confronted
with precision measurements have become an important
area of research for self-consistency tests of the SM or
in searching for new physics phenomena. This has been
the motivation for significant progress, both on the the-
oretical and the experimental side, in addressing issues
arising in precision top-quark mass determinations, see,
e.g., [34, 40] for reviews of recent activities.

Here, two examples are given, where the numerical
value of the top-quark mass mt directly affects relevant
physics interpretations. In fig. 4 the current experimen-
tal results for the W-boson mass MW and the top-quark
mass mt are shown in comparison with the theory pre-
dictions of the SM and its minimal supersymmetric ex-
tension (MSSM) for a range of Higgs boson masses MH ,
see, e.g., [41]. The plot indicates consistency of the val-
ues for the various mass parameters MW , mt and MH at
the level of 1σ uncertainties within the SM. In fig. 5 the
direct impact of the top-quark mass on the Higgs sec-
tor is illustrated. Regions of stability of the electroweak
vacuum in the mt and MH plane are plotted, which can
be obtained from extrapolating the SM up to the Planck
scale, see, e.g., [42, 43, 44, 45, 46]. Thus, at high scales
the existence of a well-defined minimum of the Higgs
potential that can induce breaking of the electroweak
symmetry, depends crucially on the precise numerical
value of mt.

A variety of methods for top-quark mass extractions
has been proposed thus far, see, e.g., [34, 40], which
use a number of distinct observables. Examples include
determinations of mt from the total cross section, or its
extraction from the distribution of the invariant mass of
a lepton and a b-jet, see, e.g., [48, 49] and [50, 51], re-
spectively.

With enough statistics, as expected from the LHC
runs at increased collision energy

√
s = 13 TeV, also ex-

clusive observables with reconstructed top-quarks come
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prediction (light-shaded green band). (Figure courtesy S.Heinemeyer,
cf. ref. [41]).

into focus. The (normalized) differential distribution of
the tt̄ + 1-jet cross section with respect to the invariant
mass of the tt̄+1-jet system displays very good sensitiv-
ity to mt, S ∼ 10 . . . 20 in eq. (3) depending on the kine-
matical region and can, potentially, lead to very precise
values for mt, see [52].

All those methods employ mostly the pole mass
scheme. The 1S mass and the PS mass have been con-
sidered in applications to hadro-production of top-quark
pairs in [53, 54]. In the sequel we will discuss the deter-
mination of the running mass in the MS scheme and mt

from reconstructed kinematics as well as the relation of
those mass parameters to the pole mass mpole

t .
The running mass in the MS scheme has so far been

used in theory predictions for the inclusive cross sec-
tion [21, 22] or for differential distributions in [56].
Such (semi-)inclusive observables are known with good
precision, i.e., to NLO in perturbative QCD in the case
of differential distributions [57, 58] or even to NNLO in
the case of the inclusive cross section [59, 60, 61, 62],
see also [63, 64, 65] for approximate NNLO differential
cross sections. These computations are typically car-
ried out in the pole mass scheme so that eq. (1) can be
employed to relate mpole

t to the MS mass. For theory
predictions in terms of the MS mass the perturbative ex-
pansion in the strong coupling converges significantly
faster. At the same time, the residual scale dependence
as a measure of the remaining theoretical uncertainty is
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√
s = 8 TeV) as a function of the top-

quark mass in the MS scheme mt(mt) at the scale µ = mt(mt) with the
ABM12 PDFs. (Figure from ref. [26]).

much improved when using the MS mass in contrast to
the pole mass mpole

t .
These findings are illustrated in figs. 6 − 9. The the-

ory predictions for inclusive top-quark pair production
with the MS and the pole mass are compared in figs. 6
and 7. The result in terms of the MS mass mt(mt) dis-
plays a much improved convergence as the higher order
corrections are successively added. The corresponding
scale dependence is shown in figs. 8 and 9 and the pre-
dictions with the MS mass exhibit a much better scale
stability of the perturbative expansion. It is also inter-
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Figure 7: Same as fig. 6 for the top-quark mass in the on-shell scheme
mpole

t at the scale µ = mpole
t . (Figure from ref. [26]).
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Figure 8: The scale dependence of the LO, NLO and NNLO QCD
predictions for the tt̄ total cross section at the LHC (

√
s = 8 TeV)

for a top-quark mass mt(mt) = 162 GeV in the MS scheme with
the ABM12 PDFs and the choice µ = µr = µ f . The vertical
bars indicate the size of the scale variation in the standard range
µ/mt(mt) ∈ [1/2, 2]. (Figure from ref. [26]).

esting to observe, that the point of minimal sensitiv-
ity where σLO ' σNLO ' σNNLO is located at scales
µ = O(mt(mt)), i.e., it coincides with the natural hard
scale of the process for the MS mass in fig. 8, whereas
it resides at fairly low scales, µ ' mpole

t /4 ' 45 GeV for
the pole mass predictions in fig. 9.

For the distribution in the invariant mass mtt̄ of the
top quark pair the same findings can be seen in figs. 10
and 11. For the MS mass predictions the convergence
is improved. Also the overall shape of the distribu-
tion changes in comparison to case of the pole mass,
the peak becomes more pronounced, while the posi-
tion of the peak remains stable against radiative correc-
tions. This is essential for precision determinations of
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Figure 9: Same as fig. 8 for the top-quark mass in the on-shell scheme
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ation in the standard range µ/mpole

t ∈ [1/2, 2]. (Figure from ref. [26]).
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Figure 10: The differential cross section versus the invariant mass mtt̄

of the top-quark pair in the MS mass scheme at the LHC with
√

S =

8 TeV. The dotted (green) curves are the LO contributions, the dashed
(blue) curves include NLO corrections and are obtained with the PDF
set CT10 [55]. The scale dependence in the range µ/m(m) ∈ [1/2, 2]
is shown as a band around the NLO curve. (Figure from ref. [56]).

the MS mass in specific kinematic regions of the invari-
ant mass distribution from LHC data in the upcoming
high-energy runs.

The results for the running mass imply, that experi-
mental determinations of the mass parameter from the
measured cross section can be performed with very
good accuracy and a small residual theoretical uncer-
tainty. This has been done in [26], where a fully corre-
lated fit of the running mass from data for the total cross
section at Tevatron and the LHC has given the value for
the MS mass at NNLO to

mt(mt) = 162.3 ± 2.3 GeV , (9)
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Figure 11: Same as fig. 10 for the top-quark mass in the pole mass
scheme. The scale dependence in the range µ/mpole

t ∈ [1/2, 2] is
shown as a band around the NLO curve. (Figure from ref. [56]).

with an error in mt(mt) due to the experimental data,
the PDFs and the value of αs(MZ). An additional the-
oretical uncertainty from the variation of the factor-
ization and renormalization scales in the usual range
(µ/mt(mt) ∈ [1/2, 2]) is small, ∆mt(mt) = ±0.7 GeV.
Eq. (9) is equivalent to the pole mass value of

mpole
t = 171.2 ± 2.4 ± 0.7 GeV , (10)

using the known perturbative conversion eq. (1) at two
loops. This is the value displayed in both plots of figs. 4
and 5, which show good consistency of the procedure
and within the current uncertainties also with the top-
quark mass values obtained from other determinations.
The accuracy of a mass determination in this way is lim-
ited to order 1%, though, by the overall sensitivity of
the total cross section to the mass parameter, S ∼ 5 in
eq. (3).

5. Monte Carlo top-quark mass

The currently most precise measurement of the top-
quark mass has been reported in [66] as the world com-
bination of the experiments ATLAS, CDF, CMS and
D0,

mt = 173.34 ± 0.76 GeV . (11)

This combination is based on determinations of mt as
a best fit to the mass parameter implemented in the re-
spective Monte Carlo program used to generate the the-
ory input. It is referred to as Monte Carlo (MC) top-
quark mass definition and is, therefore, lacking a direct
relation to a mass parameter in a well-defined renormal-
ization scheme.
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mMSR
t (1) mMSR

t (3) mMSR
t (9) mt(mt) mpole

1lp mpole
2lp mpole

3lp
173.72 173.40 172.78 163.76 171.33 172.95 173.45

Table 1: Columns 1-3: Top-quark MSR masses at different scales. Column 4: MS mass mt(mt) converted at O(α3
s ) for αs(MZ ) = 0.1185 from the

MSR mass mMRS
t (3 GeV). Columns 5-7: Pole masses at 1, 2 and 3 loop converted from the MS mass mt(mt). All numbers are given in GeV units.

Nonetheless, the MC mass definition can be trans-
lated to a theoretically well-defined short-distance mass
definition at a low scale with an uncertainty currently
estimated to be of the order of 1 GeV, see [34, 67]. This
translation uses the fact that multi-observable analyses
like in [66] effectively assign a high statistical weight
to the invariant mass distribution of the reconstructed
boosted top-quarks, because of the large sensitivity of
the system on the mass parameter, especially around the
peak region.

The top-quark invariant mass distribution can be
computed to higher orders in perturbative QCD, cf.,
figs. 10 and 11, and its peak position can also be de-
scribed in an effective theory approach based on a fac-
torization [68, 69] into a hard, a soft non-perturbative
and a universal jet function. Each of those functions
depends in a fully coherent and transparent way on the
mass at a particular scale. The reconstructed top ob-
ject largely corresponds to the jet function which is gov-
erned by a short-distance mass mMRS

t at the scale of the
top quark width Γt, see, e.g., [34, 67]. This line of ar-
guments allows one to systematically implement proper
short-distance mass schemes for the description of the
MC mass in eq. (11), which can then indeed be con-
verted to the pole mass.

Thus, the top-quark mass parameter mMC
t is identified

with a scale-dependent short-distance mass mMSR
t (R) at

low scales, cf. [67],

mMC
t = mMRS

t (3+6
−2 GeV) , (12)

with an uncertainty ∆mt originating from the range of
possible scales, R ' 1 . . . 9 GeV. The value of ∆mt can
be read off from Tab. 1 as ∆mt =+0.32

−0.62 GeV. It should
be emphasized, though, that this uncertainty is only an
estimate of the conceptual uncertainty that is currently
inherent in eq. (12). Very likely, the true corrections are
not exactly calculable since a complete analytic control
of the MC machinery is not feasible and the exact defini-
tion of the MC mass also depends on details of the par-
ton shower, the shower cut and the hadronization model,
see, e.g., [70].

Subsequently, there are two choices to convert mMSR
t

in eq. (12) to the pole mass mpole
t . The first possibility

applies the renormalization group to run mMSR
t from the

low scales, R ' 1 . . . 9 GeV, up to R = mt in order to

obtain the corresponding value for the MS mass mt(mt).
This procedure effectively resums large logarithms. Af-
terwards, mt(mt) is then converted to the pole mass at a
given order in perturbation theory. Tab. 1 illustrates this
procedure for mMSR

t (3GeV) = 173.40 GeV, see [34] for
an extensive documentation.

The second choice converts the short distance mass
mMSR

t at the low scales directly to the pole mass as
shown in Tab. 2. This leads to relatively small correc-
tions, however, the convergence of the perturbative ex-
pansion is poor and it is therefore disfavored. In the ap-
plication of the one-, two- or three-loop conversion for-
mula, the value of the mass parameter shifts by roughly
∆mt ∼ 0.15GeV with every additional order. This is due
to large logarithms which need to be resummed via the
renormalization group equation [71].

mMSR
t (3) mpole

1lp mpole
2lp mpole

3lp
173.40 173.72 173.87 173.98

Table 2: Column 1: Top-quark MSR mass at R = 3 GeV. Columns
2-4 show the 1, 2 and 3 loop pole masses converted from the MSR
mass mMRS

t (3 GeV). All numbers are given in GeV units.

In summary, this leads to the following result for
the pole mass, which corresponds to the MC mass in
eq. (11),

mpole
t = 173.39 ± 0.76 GeV (exp) + ∆mth , (13)

where the small increase by 0.05 GeV in the central
value compared to eq. (11), is due to the shift of the
three-loop pole mass with respect to mMSR

t (3 GeV) in
Tab. 1. The theoretical uncertainty can be estimated to

∆mth = +0.32
−0.62 GeV (mMC

t → mMSR
t (3GeV))

+ 0.50 GeV (mt(mt)→ mpole
t ) , (14)

where, as indicated, the first part of the uncertainty is
due to the scale choices when relating the MC mass to
the short-distance mass and is subject to the qualifica-
tions mentioned above. The second part of the uncer-
tainty, ∆mt = +0.50GeV, estimates the unknown higher
order corrections in the conversion of the MS to the pole
mass. Those corrections are positive and the quoted
value for ∆mt is taken as the difference between the two-
loop and the three-loop conversion, see column 6 and 7



S. Moch / Nuclear Physics B Proceedings Supplement 00 (2014) 1–10 9

in Tab. 1. This part can definitely be diminished once
the relation of the pole to the MS mass, i.e., the respec-
tive coefficients ank in eq. (1), are known to four loops
in QCD.

Altogether, the additional uncertainties in eq. (14) are
sizeable and have not been addressed in [66] when inter-
preting the experimental measurement of the top-quark
mass in eq. (11). The theory uncertainties are not uncor-
related, i.e., the linear sum ∆mth =+0.82

−0.62 GeV in eq. (14)
should be combined in quadrature with the experimen-
tal error in eq. (13) leading to mpole

t = 173.39+1.12
−0.98GeV

for the MC mass in eq. (11).

6. Summary

In QCD an unambiguous definition of the mass
parameter requires the choice of a renormalization
scheme, which is conventionally taken to be the pole
mass, although this has its short-comings due to the
renormalon ambiguity. A theoretically well-defined de-
termination of the quark mass as a short-distance mass
is possible in QCD even to NNLO by using inclusive
observables like structure functions in DIS for charm-
or bottom-quarks or the total cross section for hadro-
production of top-quark pairs. This has the advantage
that the theory predictions in terms of the MS mass con-
verge faster at higher orders and are less affected by
scale variations. Results for the determination of the
quark masses in this way have been presented for charm
in eqs. (5), (6) and (7), for bottom in eq. (8) and for top
in eqs. (9) and (10).

The use of running masses in global analyses of PDFs
together with theory predictions for the DIS heavy-
quark scattering processes in the FFNS allows for a
precise description of the data and well-defined extrac-
tions of the mass parameters for charm- and bottom-
quarks which are compatible with the world average.
The charm-quark masses reported in eqs. (5), (6) and
(7) have been obtained by keeping the full correlation
of the dependence on all fit parameters.

The top-quark mass is an outstanding parameter in
the SM. Its numerical value is important for many pre-
cision tests of the model at current collider energies as
well as for possible extrapolations to high energies. The
top-quark mass parameter measured via kinematical re-
construction from the top-quark decay products by com-
parison to MC simulations, termed the MC mass, is not
identical to the pole mass. However, the measured val-
ues can be converted to the pole mass provided certain
assumption on the relation of the MC mass to a short-
distance mass at a low scale are made. This conver-
sion leads to an additional uncertainty of the order of 1

GeV as quantified in eqs. (12)-(14). Within the current
accuracies, all those determinations show good consis-
tency. Further efforts both in theory and experiment are
required though, to reduce the uncertainty.
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