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Abstract

We review the recent progress in the determination of top-quark pair production cross sections at hadron colliders,
in particular the Tevatron and the LHC. We discuss the theoretical developments, which lead to the determination of
next-to-next-to-leading (NNLO) corrections to this process. Furthermore, we describe some applications which follow
from a comparison of theory predictions with data, e.g. the determination of the top-quark pole mass, constraints on
the gluon distribution function and bounds on light top squarks. Finally, we present the most recent analysis of
the Tevatron forward-backward asymmetry, where we demonstrate agreement between the Standard Model and the
measurement.
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1. Introduction

Top-quark pair-production is one of the cornerstones
of the Standard Model (SM) program at hadron col-
liders, and a number of precision calculations of this
process have appeared in the recent past. In this pro-
ceedings, we focus our attention first and foremost on
the total inclusive cross-section which, during the last
two years, became known in full NNLO. This progress
allowed for several non-trivial applications, and ulti-
mately became the basis for high-precision predictions
at the differential level. As an example of the latter, we
discuss the top-quark forward-backward asymmetry as
measured at the Tevatron.

The text is organised as follows. In the next sec-
tion, we discuss the total cross section at fixed order
and with resummation. We continue with a presentation
of methods, which have been used for the determination
of both real-radiation and virtual corrections. Subse-
quently, we discuss three applications: top-quark pole
mass measurement, constraints on the gluon PDF, and
bounds on top squarks. The last main section concerns
the forward-backward asymmetry at the Tevatron. Short
conclusions close the proceedings.

2. Total cross sections at fixed order and with resum-
mation

The total top-pair production cross-section reads:

σtot =
∑
i, j

∫ βmax

0
dβΦi j(β, µ2) σ̂i j(β,m2, µ2) , (1)

where i, j run over all possible initial sate partons, Φi j is
the partonic flux which is a convolution of the densities
of partons i, j and includes a Jacobian factor

Φi j(β, µ2) =
2β

1 − β2 Li j

(
1 − β2

max

1 − β2 , µ2
)
, (2)

with

Li j(x, µ2) = x
(

fi ⊗ f j

)
(x, µ2) , (3)

where ⊗ is defined as ( f ⊗ g)(x) =∫∫ 1
0 dy dz f (y)g(z) δ(x − yz). The dimensionless

variable β =
√

1 − ρ, with ρ = 4m2/s, is the relative
velocity of the final state top quarks having pole mass
m and produced at partonic c.m. energy

√
s; βmax

corresponds to the collider c.m. energy; µ stands for
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Figure 1: Summary of LHC and Tevatron measurements of the top-
quark-pair production cross section as a function of the centre-of-
mass energy compared to the NNLO QCD calculation complemented
with NNLL resummation (top++2.0). The theory band represents un-
certainties due to renormalisation and factorisation scale, parton den-
sity functions and the strong coupling. The measurements and the the-
ory calculation are quoted at mt = 172.5 GeV. Measurements made at
the same centre-of-mass energy are slightly offset for clarity. Plot
taken from [16].

both the renormalization (µR) and factorization scales
(µF).

For µF = µR = µ the partonic cross-section reads:

σ̂i j

(
β,m2, µ2

)
=
α2

S

m2

{
σ(0)

i j + αS

[
σ(1)

i j + Lσ(1,1)
i j

]
+

α2
S

[
σ(2)

i j + Lσ(2,1)
i j + L2σ(2,2)

i j

]
+ O(α3

S )
}
, (4)

where L = ln
(
µ2/m2

)
and αS is the MS coupling renor-

malized with NL = 5 active flavors at scale µ2. The
functions σ(n(,m))

i j depend only on β.
The dependence on µR , µF can be trivially restored

in Eq. (4). The NLO results are known exactly [1, 2, 3].
The scale controlling functions σ(2,1)

i j and σ(2,2)
i j can be

easily computed from the NLO results σ(1)
i j , and can be

found in [4]. The fixed order results at NNLO have been
calculated in a series of papers [5, 6, 7, 8]. Augmented
with next-to-next-to-leading logarithmic resummation
of soft gluon effects [9, 10, 11], these results have been
implemented in the C++ program Top++ [12]. Figure 1
presents a comparison between the most recent data and
the best theory predictions. We note that prior to the ex-
act NNLO results, the most precise theory understand-
ing of the total cross section was based on its expansion
in the threshold limit [13].

The results of Refs. [5, 6, 7, 8] have been obtained

with numerical methods discussed in the next section.
They are given in the form of fitting formulae as a poly-
nomial in the number of active flavors

σ(2)
i j (β) = F i j

0 (β) + F i j
1 (β)NL + F i j

2 (β)N2
L . (5)

The functions F i j
2 do not present any threshold enhance-

ments. On the other hand, both Fqq̄
0,1 and Fgg

0,1 are af-
fected by soft-gluon and Coulomb effects at β = 0.
These are known analytically in a power-logarithmic ex-
pansion [13]. The difference between the exact result
and the analytic threshold expansion, F(fit)

0,1 is shown in
Figs. 2 and 3. Fig. 3 also contains F(fit)

2 for the gluon
fusion channel, since the latter could not be obtained in
closed analytic form.
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Figure 2: The functions F(fit)
0 and 10 × F(fit)

1 (rescaled for improved
visibility) for the qq̄ channel as: a) discrete sets of calculated values,
with errors, on the grid of 80 points (red and blue error bars - barely
visible because of the size of the errors) and b) analytical fits (black
lines). Plot taken from [5].

The exact calculation of the NNLO corrections al-
lowed for a very precise determination of the total cross
section. Table 1 gives the values for various colliders.
It contains an account of the error estimates due to the
theory uncertainty as obtained from scale variation and
input parameter variation, in particular the dependence
on the parton distribution functions. We notice that the
intrinsic uncertainty of the theory is at the level of 5%,
whereas that due to PDFs is lower, at the level of 3%. It
turns out that soft gluon resummation allows to further
reduce the theory uncertainty, while at the same time
slightly increasing the prediction. The respective values
are given in Tab. 2. The quoted theory precision is at the
level of 3%. We note that the known electroweak cor-
rections [14, 15] for this process are negligible on this
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Figure 3: The functions F(fit)
2,1,0 for the gg channel versus the 80 com-

puted points. For improved visibility, the function F(fit)
1 is multiplied

by a factor of 10, while F(fit)
2 by a factor of 104. Plot taken from [8].

scale. On the other hand, it is currently hardly imag-
inable to further reduce the theory uncertainty. This
would, in fact, require a calculation of QCD corrections
at the N3LO. In any case, it is interesting to observe
that top-quark production exhibits a good perturbative
expansion. This is illustrated in Fig. 4.

Collider σtot [pb] scales [pb] pdf [pb]
Tevatron 7.009 +0.259(3.7%)

−0.374(5.3%)
+0.169(2.4%)
−0.121(1.7%)

LHC 7 TeV 167.0 +6.7(4.0%)
−10.7(6.4%)

+4.6(2.8%)
−4.7(2.8%)

LHC 8 TeV 239.1 +9.2(3.9%)
−14.8(6.2%)

+6.1(2.5%)
−6.2(2.6%)

LHC 14 TeV 933.0 +31.8(3.4%)
−51.0(5.5%)

+16.1(1.7%)
−17.6(1.9%)

Table 1: Pure NNLO theoretical predictions [8] for various colliders
and c.m. energies.

Collider σtot [pb] scales [pb] pdf [pb]
Tevatron 7.164 +0.110(1.5%)

−0.200(2.8%)
+0.169(2.4%)
−0.122(1.7%)

LHC 7 TeV 172.0 +4.4(2.6%)
−5.8(3.4%)

+4.7(2.7%)
−4.8(2.8%)

LHC 8 TeV 245.8 +6.2(2.5%)
−8.4(3.4%)

+6.2(2.5%)
−6.4(2.6%)

LHC 14 TeV 953.6 +22.7(2.4%)
−33.9(3.6%)

+16.2(1.7%)
−17.8(1.9%)

Table 2: Best NNLO+NNLL theoretical predictions [8] for various
colliders and c.m. energies.

An important goal of the publications [5, 6, 7, 8] was
to assess the precision of various previous approxima-
tions to the QCD corrections to the hadronic cross sec-
tion. Most of these were based on soft-gluon resum-
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Figure 4: Convergence of the perturbative expansion [17] of the to-
tal top-quark pair production cross section, including scale variation.
The predictions correspond to the LHC @ 8 TeV. The parameter A set
to 0 in this plot pertains to sub-leading effects in soft-gluon resumma-
tion (see Ref. [11]).

mation, e.g. as studied in Ref. [11]. It was possible
to show that the sub-leading terms in the threshold ex-
pansion, which can only be determined in an exact cal-
culation, have a noticeable impact on the final predic-
tion. It turned out, for example, that in the case of the
LHC setup the difference between the exact result and
previous approximations reached up to 12%, which is
the same size as the total NNLO correction itself. The
source of such large discrepancies is best illustrated by
comparing the analytic expansion with the exact result
multiplied by the parton flux in the gluon case. This is
shown in Fig. 5. It is seen that while the results coincide
in the threshold region β ≈ 0, there is a difference over
most of the β variation range, which is further enhanced
by the large gluon flux.

Another approximation method has been proposed in
[18]. The idea of that publication was to use Padé ap-
proximants linking the threshold region with the high-
energy region to cover the complete variation range of
β. The quality of this approach can be illustrated in the
case of the quark-gluon channel [7]. The most promi-
nent feature of the partonic cross-section σ(2)

qg is its high-
energy behavior [1, 19, 20, 21, 22, 23]

σ(2)
qg→tt̄+X

∣∣∣∣
ρ→0
≈ c1 ln(ρ) + c0 + O(ρ) . (6)

The constant c1 has been predicted exactly in Ref. [24],
with an NL-independent numerical value

c1 = −1.689571450230512 . (7)

To improve the high-energy endpoint behavior of the
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Figure 5: Partonic cross-section times gg flux (2) for the following
three cases: exact NNLO (thick black line), approximate NNLO with
exact Born term (blue dashed line) and approximate NNLO with lead-
ing Born term (thin red line). The plot is reproduced after Ref. [8].

fits, the exact ∼ ln(ρ) behavior from (6) was imposed in
Ref. [7]. Then, an estimate of the constant c0 could be
derived

c0 = −9.96 + 0.0345NL . (8)

Setting NL = 5, Eq. (8) agrees 1 with the numerical es-
timate of c0 derived in Ref. [18] with the help of com-
pletely independent methods. The success of the deter-
mination of the high energy behaviour does not, how-
ever, translate to a good estimate of the shape of the
partonic cross section. This is demonstrated in Fig. 6.
The origin of the large discrepancy lies in the choice of
variable to perform the Padé approximation. As func-
tion of β (or ρ) the cross section is extremely sensitive to
the order of expansion. Indeed, the difference between
the leading behaviour and the complete high-energy ex-
pansion is very large already at NLO [3]. Thus, using
only the leading behaviour at NNLO, one cannot expect
to obtain a good approximation to the real behaviour of
the function. For the total cross section, this approach
causes differences with respect to the exact result at the
level of almost 5%.

3. Perturbative methods

The results discussed in the previous section have
been obtained from a next-to-next-to-leading order cal-
culation of all the available partonic channels. NNLO

1We note that the prediction for the constant c0 derived in Ref. [18]
contains no explicit NL dependence.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

β

Approximation Ref[36]

Best approx. Ref[36]

σqg
(2)

Figure 6: Comparison [7] of the exact partonic cross-section σ(2)
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(dashed blue) is the “best” approximation of Ref. [18]. The approxi-
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calculations always involve the determination of the
two-loop virtual, one-loop squared, real-virtual and
double-real corrections. In our case, the two-loop vir-
tual corrections have been evaluated as in Refs. [25, 26],
utilising the analytical form for the poles [27]. The one-
loop squared amplitude has been calculated previously
[28, 29, 30] and confirmed by us. The real-virtual cor-
rections have been derived by integrating the one-loop
amplitude with a counter-term that regulates all its sin-
gular limits [31, 32, 33, 34]. The finite part of the one-
loop amplitude has been computed with a code used in
the calculation of pp→ tt̄ j at NLO [35, 36]. The double
real corrections have been computed as in Refs. [37, 38].

In this section, we would like to discuss the most
challenging parts of the calculation, namely the eval-
uation of phase space integrals for real radiation and
the determination of the two-loop virtual corrections.
It turns out, for instance, that a method that has been
proposed by us for the calculation of real radiation in
top-quark pair production could be generalised and has
already found many non-trivial applications. In fact, re-
cently, we have been able to present a complete formu-
lation for the calculation of arbitrary cross sections at
NNLO.

3.1. Sector-improved residue subtraction scheme

A major obstacle in the calculation of NNLO correc-
tions is the evaluation of double-real and mixed real-
virtual contributions containing infrared singular phase
space integrals. In principle, these contributions can
be obtained by means of Monte Carlo techniques, once
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suitable subtractions have been introduced to generate
numerically integrable functions. The form of the sub-
tractions defines a subtraction scheme. Unfortunately, it
turns out that subtraction schemes are extremely com-
plex. At present, there are several on-going multi-year
efforts at the construction of general solutions. Antenna
subtraction [39], and qT subtraction [40], are amongst
the most advanced initiatives, which have already found
several non-trivial applications. Another scheme under
construction has been introduced in Ref. [41]. Here, we
will be concerned with the subtraction scheme STRIP-
PER introduced by us in Ref. [37]. Inspired in some
aspects by ideas of Frixione, Kunszt and Signer [42],
and in other aspects by ideas of Binoth and Heinrich
[43] (see Ref. [44] as well), the scheme has proven its
worth in many applications: it has allowed for the de-
termination of NNLO corrections to hadronic top-quark
pair production [38, 5, 6, 7, 8], fully differential top-
quark decays [45], inclusive semileptonic charmless b-
quark decays [46], associated Higgs boson and jet pro-
duction in gluon fusion [47], muon decay spin asymme-
try [48], and t-channel single-top production [49]. The
listed advanced STRIPPER applications performed in-
dependently of the inventor have been preceded by the
much simpler case of QED corrections to Z-boson de-
cay into a pair of massless leptons [50]. The most recent
work on the scheme [51] was concerned with complet-
ing the construction of the scheme in order to allow for
the evaluation of cross sections for arbitrary processes.

The original idea of Ref. [37] was to concentrate on
the numerical calculation of the coefficients of the Lau-
rent expansion in ε (dimensional regularization parame-
ter, with space-time dimension d = 4−2ε) of the double-
real cross section contribution. The latter requires a
phase space integral over the momenta not only of the
partons present in the Born approximation, but also of
two additional massless partons. It seemed obvious that
other cross section contributions are much easier to ob-
tain, since their kinematics is, in the worst case, the
same as that of next-to-leading order real-radiation con-
tributions. Furthermore, the concept was to refrain from
(almost) any analytic integration. By inspection of other
efforts, it was clear that it is the insistence on analytic in-
tegration that makes the subtraction schemes difficult to
develop. Finally, in order to avoid as many complica-
tions as possible, the construction was performed uni-
formly in d dimensions. This corresponds to conven-
tional dimensional regularization, where both momenta
and spin degrees-of-freedom of external particles are d
dimensional. This implies that even Born matrix ele-
ments will have a non-trivial expansion in ε. While the
other basic ideas of the scheme stood the test of time,

the use of CDR is now an important drawback. Indeed,
software implementations of tree-level matrix elements
only provide them at ε = 0, i.e. in four dimensions. This
makes it necessary to recalculate the matrix elements for
each project from scratch. Furthermore, the need to pa-
rameterize an increasing number of dimensions depend-
ing on the multiplicity of the process seems not only a
major annoyance, but also a source of inefficiency. In
the publication [51], the problem was solved by intro-
ducing a number of corrections to the integrated sub-
traction terms in the double-real radiation contribution.
As a result, we have formulated the scheme in ’t Hooft-
Veltman regularization. In particular, we now only need
four-dimensional external momenta and polarizations in
the evaluation of actual matrix elements. There is still
a trace of higher dimensionality in the integration over
unresolved momenta. However, we only have to con-
sider six dimensional unresolved momenta in the worst
case. On the example of top-quark pair production,
we have also demonstrated that the introduced improve-
ments of STRIPPER fulfill their purpose. We stress that
we have only presented the algorithm to obtain the ex-
pressions needed for the implementation of the subtrac-
tion scheme. This algorithm requires the knowledge of
soft and collinear limits of QCD amplitudes and pro-
vides the expressions for the subtraction and integrated
subtraction terms by simple substitutions. Due to the
number and size of the resulting final formulae, we did
not reproduce them in [51]. Instead, we plan to provide
a software package in the future. Nevertheless, existing
calculations can be converted to ’t Hooft-Veltman regu-
larization with moderate effort following Ref. [51].

As already mentioned, the idea behind the construc-
tion of the subtraction scheme STRIPPER is to derive
Laurent expansions in ε for each of the cross section
contributions independently. The basic algorithm has
three stages:

phase space decomposition: phase spaces with n + 1
and n + 2 final-state particles (n being the num-
ber of particles at Born level) are decomposed into
sectors, in which only certain types of singularities
may occur;

phase space parameterization: in each sector, a spe-
cial parameterization is introduced using spherical
coordinates in d dimensions, in which singularities
are only parameterized with 2 variables for n + 1-
final-state-particles phase spaces, and with 4 vari-
ables for n + 2-final-state-particles phase spaces;

subtraction and integrated subtraction terms: in
each parameterization, subtraction terms in the
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relevant variables are introduced, which make it
possible to obtain an expansion in ε, the coeffi-
cients of which are integrable. The subtraction
terms only require the knowledge of the singular
limits of QCD amplitudes, and are process inde-
pendent in the sense that the process dependence
is confined to the matrix elements. Furthermore,
pointwise convergence of phase space integration
is guaranteed.

After application of this algorithm, cross sections may
in principle be evaluated numerically. Nevertheless,
since dimensional regularization involves infinite di-
mensional vectors, the effective dimension of the vec-
tors, which actually occur in the calculation increases
with multiplicity. In fact, any new vector requires an
increase of the effective dimension by one. For two-
to-two processes at leading order, one already needs
five dimensions at next-to-next-to-leading order. Fur-
thermore, matrix elements must be provided as expan-
sions in ε. In order to simplify the calculation, we intro-
duce the ’t Hooft-Veltman version of dimensional regu-
larization, in which resolved particle momenta and spin
degrees-of-freedom are four-dimensional. In this case,
we also only need four-dimensional matrix elements.
The construction proceeds in additional three stages:

average over azimuthal angles: integrated subtrac-
tion terms, which have been derived in relation to
a collinear limit, are averaged over the unphysical
transverse direction. For most cases, this is equiv-
alent to the use of averaged splitting functions,
but there are important exceptions. This step is
important in order not to have contractions of four-
dimensional matrix elements with d-dimensional
transverse vectors;

separation of finite contributions: the different con-
tributions listed in this section are further decom-
posed into classes with different kinematics and
loop order. The sum of the terms in each class
is finite. This requires a modification of the in-
tegrated subtraction terms for the double-real ra-
diation. In practice, counterterms are introduced,
which are added to one class of contributions and
subtracted from another;

’t Hooft-Veltman regularization: the measurement
function is modified to contain delta-functions
restricting the momenta of resolved particles to
be four-dimensional. For most classes of finite
contributions, this is already sufficient to fulfill the
requirements of ’t Hooft-Veltman regularization,

and the matrix elements can be evaluated in
four dimensions. Nevertheless, one class, the
single-unresolved contributions to double-real
radiation, requires a further modification of the
integrated subtraction terms.

After these steps, the subtraction scheme does not
require higher orders of the ε-expansion of the ma-
trix elements, and all resolved momenta are four-
dimensional. The calculation still involves unresolved
momenta, which may need up to two additional di-
mensions, but only occur in soft and splitting func-
tions. In general, two-to-two processes at leading order
require five-dimensional unresolved momenta at next-
to-next-to-leading order. For higher multiplicity, six-
dimensional momenta must be introduced.

We will not give any further details of the complete
formulation of the subtraction scheme from Ref. [51],
since this would exceed by far the space foreseen for
this proceedings. On the other hand, we will now dis-
cuss a comparison between results obtained using the
CDR and ’t Hooft-Veltman formulations for the partic-
ular case gg→ tt̄ + ng, n = 0, 1, 2.

The relevant partonic cross section is rendered di-
mensionless and independent of the value of the strong
coupling with the normalization

σ̃(2) =
m2

t

α4
S

σ̂(2) , (9)

where σ̂(2) is the total cross section contribution at
O(α4

S ). Furthermore, we set

µR = µF = mt . (10)

Our results are obtained at the point

β =

√
1 −

4m2
t

ŝ
= 0.5 . (11)

The cross section contributions are divided into
double-unresolved and single-unresolved. The double-
unresolved contributions correspond to coefficients of
the poles in ε involving matrix elements with only four
partons, in this case for the process gg→ tt̄. We obtain

σ̃CDR
DU = −0.0304(4) , (12)

σ̃HV
DU = −0.0304(2) . (13)

Similarly, the single-unresolved contributions corre-
spond to the coefficients of the poles in ε involving ma-
trix elements with five partons, in this case for the pro-
cess gg → tt̄g. These require subtraction terms, which
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are also included. We obtain

σ̃CDR
SU = 0.2506(3) , (14)

σ̃HV
SU = 0.2511(2) . (15)

The agreement, up to statistical errors due to Monte
Carlo integration, between the different evaluations
serves as an excellent check of the correctness of the
proposed approach.

3.2. Numerical methods for virtual corrections

The solution developed for the determination of real-
radiation contributions to top-quark pair production at
NNLO turned out be general and applicable to arbitrary
processes as discussed in the previous sub-section. The
case of the two-loop virtual corrections is more com-
plicated. These contributions are still obtained on a
process-by-process basis. There is a long-term effort to
determine the amplitudes for top-quark pair production
analytically [52, 53, 54, 55, 56]. We, on the other hand,
decided to work with semi-numerical methods based
on differential equations, as proposed in Ref. [25] and
applied to the quark-annihilation channel. Instead of
solving the differential equations analytically, the idea
was to resort to numerical methods. The problems of
this approach are of two kinds. At first, it is neces-
sary to provide a boundary condition in the form of
high precision values of the integrals at a single point.
Inspired by Refs. [57, 58], a point in the high-energy
range has been chosen for this purpose. The asymp-
totics of the integrals in this limit have been derived
using Mellin-Barnes techniques. The second prob-
lem is related to singularities of the differential equa-
tions, which cause substantial problems. In the case
of the quark-annihilation channel amplitudes, the use of
higher numerical precision was sufficient to provide nu-
merical values within some acceptable kinematical do-
main. Unfortunately, the gluon fusion channel is sub-
stantially more demanding both in the determination of
the asymptotics of the integrals, and in the treatment of
numerical instabilities. The techniques that we have ap-
plied in this case are discussed below. The results have
been presented in [26].

The two-loop amplitudes for heavy-quark pair-
production are expressed through 726 Feynman dia-
grams in the gluon-fusion channel, and 190 diagrams
in the quark annihilation channel. Due to the struc-
ture of the QCD vertices, the topologies present in the
quark-annihilation case are a subset of those present in
the gluon case. Using the Laporta algorithm, the occur-
ring integrals are reduced to a set of 422 masters, out

of which only 145 are needed for the quark-annihilation
case. Based on experience, we consider integrals with
less than six propagators as easy. This leaves 212 dif-
ficult six and seven line integrals to evaluate. In our
work, we did not use any external input, i.e. we did not
rely on integrals calculated by others. Nevertheless, 38
of the difficult integrals have been evaluated by us in
Ref. [25]. The remaining number is further reduced by
the fact that 89 integrals can be obtained from others by
a t ↔ u channel transformation. Thus, the final number
of new integrals that were evaluated in [26] was 100.
Thanks to the work Ref. [58], 17 of these were at least
known in the high-energy limit.

Since we are dealing with four-point amplitudes with
a single mass scale, the integrals, Mi, once stripped of
their global mass dimension by appropriate rescaling,
depend on two dimensionless variables. This means that
the functional dependence of the integrals is fully spec-
ified by two systems of homogeneous linear first order
partial differential equations (s and t are the usual Man-
delstam invariants, and m is the top-quark mass)

m2 ∂

∂m2 Mi(m2/s, t/s, ε) =∑
j

J(m2)
i j (m2/s, t/s, ε) M j(m2/s, t/s, ε) , (16)

t
∂

∂t
Mi(m2/s, t/s, ε) =∑

j

J(t)
i j (m2/s, t/s, ε) M j(m2/s, t/s, ε) , (17)

which can be obtained by taking derivatives in the
parameters and reducing the resulting integrals with
integration-by-parts identities to the original masters.
The elements of the Jacobi matrices, J(m2) and J(t), are
rational functions of m2/s, t/s and ε. We require a so-
lution for the master integrals in the form of Laurent
expansions in ε.

The solution of the system is obtained by choosing a
path, possibly complex, in the parameter space

(m2/s, t/s) → (m2(z)/s, t(z)/s) , (18)

and solving the resulting ordinary differential equation
in z. This can be done either numerically or as a power-
logarithmic series in z. In practice, we have proceeded
as follows

1. We have determined analytically the first few terms
of the high-energy expansion of the master inte-
grals. The results are a power-logarithmic series in
m2/s, with coefficients, which are exact in t/s. In
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order to obtain our results, we have used Mellin-
Barnes techniques, and in particular relied heavily
on the MB package [59]. In a few cases, we re-
covered the exact dependence on t starting from
the limiting behavior at t = 0 and using differen-
tial equations in t. In order to obtain the boundary
condition, we performed a double expansion of the
Mellin-Barnes representation of a given Feynman
integral in m2 and t. The resulting Mellin-Barnes
integrals, which were pure numbers were evaluated
with very high precision and resummed with the
PSLQ algorithm [60]. In simpler cases, we have
used the XSummer package [61] for resummation.

2. In a next step, we have obtained deep high-energy
expansions using the differential equations in m2

and the boundary conditions from the previous
step. These expansions were used to derive high-
energy expansions of the amplitudes, and to obtain
high precision numerical values of the master inte-
grals at small mass.

3. Using the numerical values determined in the pre-
vious step, we have solved the differential equa-
tions in m2 and t along contours in the complex
plane. To obtain the solution, we have used the
software from Ref. [62] with improvements to han-
dle higher precision numbers [63].

4. Around β = 0, we have obtained, with the help of
the differential equations, deep power-logarithmic
expansions in β for fixed values of the scattering
angle. These expansions were generated from un-
known boundary coefficients, which were deter-
mined by matching the expansion to the numerical
solution from the previous step at a point, at which
both the expansion and the numerical solution pro-
vide high precision. This method can be used at
any singular point, and allows to avoid numerical
instabilities of the differential equations.

The results obtained with this method fall into three
kinematical domains: threshold, “bulk”, and high-
energy. The “bulk” domain covers moderate β values
and is given purely numerically on a large grid. The
sampling values of β are chosen as in [5, 6, 7, 8], i.e.

βi = i/80 , i = 1, ..., 79 , (19)

and β80 = 0.999. This covers the range of values avail-
able at LHC @ 8 TeV. The dependence on the scattering
angle is described through

cos θi = ±xi , i = 1, ..., 21 , (20)

where the xi correspond to the 21 sampling points of
the Gauss-Kronrod integration rule of order 10, and can

be obtained with any major algebraic/numeric computer
system, e.g. Mathematica. The Gauss-Kronrod rule
is an efficient deterministic rule for smooth functions,
which also provides an error estimate by sampling ev-
ery second point of the rule with appropriate weights.
This specific choice of the cos θ points has been made,
because a first aim was to provide very precise values
of the contributions of the amplitudes to the total cross
sections.

An example result is shown in Fig. 7 for the case
of the gluon fusion channel with the number of light
quarks set to zero. The main purpose of this figure is to
demonstrate that, besides singularities at threshold and
at high-energy forward and backward directions, the re-
sult is rather structureless. This allows in fact to use
interpolation in practical implementations.

Figure 7: Finite remainder of the gluon-fusion channel renormalized
two-loop virtual amplitude for NL = 0. The scale has been set to
µ = m. Plot taken from Ref. [26].

Our results for the two-loop virtual amplitudes can
be used to obtain the leading threshold behavior of par-
tonic top-quark pair-production cross sections at next-
to-next-to-leading order. When β ≈ 0, cross sections
are dominated by terms of the form β × 1/βn lnm β with
n > 0 and/or m > 0. While the first factor of β is a
phase space suppression, the enhancements by positive
powers of ln β and 1/β are due to emissions of soft glu-
ons and non-relativistic potential interactions between
the quark and the anti-quark. At next-to-next-to-leading
order, the coefficients of these singular terms have been
determined in Ref. [13]. In Ref. [26], we have extended
the analysis to include terms with n = m = 0, which are
velocity independent with respect to the Born cross sec-
tion. The threshold expansion including both singular
and constant terms can be obtained from factorization
as explained in Ref. [64]. According to the latter pub-
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lication, close to threshold, a cross section for a given
initial state can be written as

σ̂ =
∑
α

Hα ⊗ S α . (21)

Hα are called hard functions, and are obtained by ex-
panding in β the partonic cross sections obtained exclu-
sively with the finite remainder of the virtual amplitudes
projected onto the color configuration α. Therefore, Hα

do not contain any real-radiation effects. S α are called
soft functions, and are given by cross sections for emis-
sion of gluons and light-quark pairs from eikonal lines
representing the external partons of the hard process in
the color configuration α. The convolution is performed
in the energy of the soft radiation. The color configura-
tions, α, must correspond to irreducible representations
of the SU(3) group, in order for this simple form to be
valid.

Using Eq. (21), we have obtained [26] the following
expansion for the gluon channel

σ(2)
gg =

68.5471
β2

+
1
β

(
496.3 ln2 β + 321.137 ln β − 8.62261

)
+ 4608 ln4 β − 1894.91 ln3 β − 912.349 ln2 β

+ 2456.74 ln β + C(2)
gg , (22)

with

C(2)
gg = 503.664−29.9249 NL+0.142857 NL

2 = 357.611 .
(23)

Similarly for the quark channel there is

σ(2)
qq̄ =

3.60774
β2

+
1
β

(
− 140.368 ln2 β + 32.106 ln β + 3.95105

)
+ 910.222 ln4 β − 1315.53 ln3 β + 592.292 ln2 β

+ 515.397 ln β + C(2)
qq̄ , (24)

with

C(2)
qq̄ = 1104.08−42.9666 NL−4.28168 NL

2 = 782.208 .
(25)

We note that the C(2) constants have been previously ob-
tained by us in Refs. [5] and [7] by expanding the fitting
formulae from these publications. While the numbers
are compatible within the estimated uncertainties, only
the most recent analysis [26] provides high-precision re-
liable results. In the course of this study, we have also
noticed that the coefficient of log β in the quark channel
was incorrectly determined in [13].

4. Applications

A precise measurement of the total top-quark pair
production cross section combined with high-accuracy
theoretical predictions offers a unique possibility to con-
strain input parameters, such as the top-quark mass and
the strong coupling constant. This approach also pro-
vides a handle on the gluon distribution function, and
even allows to constrain physics beyond the SM.

4.1. Top-quark pole mass

As far as the top-quark mass is concerned, the total
cross section provides a clean means of determining the
pole mass. It is clear that this type of measurement will
never be competitive with the best determinations of mt,
even when we take into account the ambiguities of the
definition (it is unclear to what extent the kinematically
reconstructed mass using Monte Carlo generators is the
pole mass). On the other hand, it definitely enters the
combination of results. The currently most precise anal-
ysis results in Fig. 8. This analysis allows to determine
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mpole
t = 172.9+2.5

−2.6 GeV , (26)

from a combination of results obtained at 7 and 8 TeV.

4.2. Constraints on the gluon PDF

In Ref. [66], we have performed an in-depth study
of the constraints on the gluon PDF, which can inferred
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from the total cross section measurement. Of course,
it is clear that once differential predictions with NNLO
precision will become available, the PDF can be con-
strained much more precisely.

Figure 9 demonstrates the strong correlation between
the gluon PDF and the total cross section. In particular,
the cross section probes the PDF in the range of x values
from 0.1 to 0.5, where the PDF errors are in fact large.
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The effect of including the top-quark data in the PDF
fit can be made more visible by inspecting Fig. 10. The
inclusion of the top-quark data leads to a reduction of
the uncertainty on the PDF by about 20%.

One can also use the total top-quark pair production
cross section to compare different PDF sets. This is il-
lustrated in Fig. 11. More details on the comparisons
and a discussion of the value of cross section ratios at
different collider energies can be found in [66].

4.3. Constraints on light top squarks

In [67] we proposed a novel approach for constrain-
ing light top squarks. Instead of focusing on discrimi-
nating differences between SUSY signal and SM back-
ground, our method is based on exploiting the kinemat-
ical similarities between tops and stops in this region.
Namely, if stop production and decays are kinemati-
cally very similar to the SM top ones, then SUSY con-
tributions may bias SM measurements. Similar meth-
ods have been proposed for constraining new physics
with W+W− measurements [68, 69, 70, 71, 72, 73, 74].
Therefore, we proposed to use top SM measurements
and SM theoretical predictions to set limits on the stop
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contamination in tt̄ event samples. We illustrated our
method by focusing on one of the most inclusive top
properties, the top production cross section, σtt̄. The
inclusiveness has the advantage of reducing theoretical
uncertainties, while our analysis profited from the recent
high precision theoretical predictions.

In the presence of a SUSY contamination, the mea-
sured cross section is

σ
exp
tt̄ = σtt̄(mt)

1 +
εt̃t̃∗ (mt,mt̃,mχ0

1
)

εtt̄(mt)
σt̃t̃∗ (mt̃)
σtt̄(mt)

 (27)

where with ε we collectively denote the efficiency and
acceptances for an event to be selected by the experi-
mental analysis. We keep the explicit mass dependence
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of the various quantities, and for simplicity we include
only the top squark pair production contribution. This
formula gets further modified if the top is kinematically
allowed to decay to a stop. Note that we assume that the
stop always decays to a lighter neutralino.

For mt̃ ∼ mt, σt̃t̃∗ ∼ 26 pb at
√

s = 7 TeV. Taking the
efficiencies εtt̄,t̃t̃∗ to be the same, and adding the theoret-
ical and experimental uncertainties in quadrature, one
naively expects to set upper bounds at 95% C.L. on σt̃t̃∗

of 45 pb and 25 pb by using the SM NLO+NLL and
NNLO+NNLL predictions for σtt̄ respectively. This
clearly indicates that it was not possible [75] to use our
proposed method before the NNLO results were avail-
able. The current constraining power of the method is
illustrated in Fig. 12.

5. Forward-backward asymmetry at the Tevatron

At the Tevatron, top-quarks were produced predom-
inantly in the hemisphere defined by the direction of
the proton beam [78, 79]. This production rate differ-
ence is often referred to as Forward-Backward Asym-
metry (AFB). The Tevatron collider was uniquely po-
sitioned for the measurement of this asymmetry, since
AFB is not present at pp colliders. The persistent dis-
crepancy [80] between the measured and predicted AFB,
has turned this observable into one of the most influen-
tial measurements performed at the Tevatron. Indeed,
the AFB-related publications by the CDF and DØ col-
laborations have initiated major research activity both
in explaining the discrepancy with beyond the Standard
Model (BSM) physics and in estimating AFB within the
Standard Model itself [78, 79, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90].

The significance of the discrepancy between mea-
surement and the SM theory prediction for AFB has al-
ways critically hinged on the size of missing higher-
order corrections. Here, we recall the calculation of the
NLO QCD corrections [35] to AFB in the related process
tt̄ j, where a nearly −100% correction was found. Such
a very large correction, if it were to also appear in tt̄,
would have had the potential of removing the discrep-
ancy. Still, a careful analysis performed by Melnikov
and Schulze [91] suggests that AFB in tt̄ is unlikely to
receive very large corrections in the next order in QCD
(i.e. in NNLO QCD) and is “most likely stable against
yet higher order corrections”.

In a series of papers [84, 85, 90] it was found that,
unexpectedly, electroweak (EW) corrections to AFB are
quite large. For example, for inclusive AFB, they are
around 25% of the NLO QCD term. Contributions from
Sudakov EW corrections have also been computed [86].

So far, the only source of information about higher-
order QCD corrections to AFB has been soft-gluon re-
summation. It was first applied at next-to-leading loga-
rithmic accuracy (NLL) in Ref. [82] and later extended
to NNLL in Ref. [83]. Further understanding of the na-
ture of such soft emissions came in the context of par-
ton showers and from probing them down to a single
gluon emission [89]. The common finding was that, be-
yond NLO QCD, soft-gluon emission generates negligi-
ble corrections to inclusive AFB. The natural interpreta-
tion of this result, especially when augmented with the
conclusions of Ref. [91], was that the missing NNLO
QCD contributions to AFB in tt̄ may be small and may
not significantly affect the SM AFB prediction.

An alternative approach to computing AFB, based on
the PMC [92] scale setting, was used in Ref. [88]. The
authors derive a value for AFB, which is significantly
higher than the usual NLO QCD correction, in agree-
ment with the CDF measurement. While the related
BLM [93] scale setting procedure is known [94] to work
well even beyond fully inclusive observables, its appli-
cability in top production at hadron colliders is not as
established. For example, the NNLO results [5, 6, 7, 8]
for the terms quadratic in the number of massless quarks
(NL) in the total tt̄ cross-section differ from those pre-
dicted within the BLM approach.

In Ref. [95], we have calculated the dominant miss-
ing correction and provided a realistic uncertainty esti-
mate for AFB in the SM. Our conclusion is that the SM
prediction is under good theoretical control and agrees
very well with the latest measurement – both inclusive
and differential – from the DØ [96] collaboration. For
inclusive AFB, we find reasonable agreement with the
latest measurement from the CDF collaboration [97]. In
the following, we discuss our findings in more detail.

Following [97], the differential asymmetry is defined
as

AFB =
σ+

bin − σ
−
bin

σ+
bin + σ−bin

, σ±bin =

∫
θ(±∆y)θbindσ , (28)

with the rapidity difference ∆y ≡ yt − yt̄. The binning
function θbin restricts the kinematics of the tt̄ pair to the
corresponding bins in figs. 13,14,15. Setting θbin = 1
in eq. (28) yields the inclusive asymmetry AFB. We
use two definitions for AFB that are formally equivalent



M. Czakon / Nuclear Physics B Proceedings Supplement 00 (2014) 1–15 12

50 100 150 200 250
0

20

40

60

80

100

mt
� @GeVD

m
Χ�

10
@G

eV
D

vary neutralino mass

ALEPH

CMS t
�

t
�

CMS 7 TeV, 2.3 fb-1

CMS tt

50 100 150 200 250 300
165

170

175

180

185

190

195

mt1
� @GeVD

m
t

@G
eV

D

vary top mass

ALEPH

CMS 7 TeV, 2.3 fb-1

Σtt

Σtt + mt

mΧ
�

1
0 = 0 GeV

mt
� = mt

Figure 12: Left: two dimensional 95% C.L. exclusion limits in the neutralino-stop mass plane. Our derived limits are shown in red (with expected
limits shown as a dashed line), LEP limits [76] in gray while the CMS direct stop search in the light stop region [77] is shown in blue. Right:
excluded regions for massless neutralino in the stop-top mass plane. Excluded region from our analysis derived using the top cross section alone
(i.e. without assuming prior knowledge of the top mass) are shaded in red, while the LEP limits are shown in gray. The effect of combining the σtt̄
measurement with current mt measurements (assuming no stop contamination) is shown as a blue line. Expected limits are shown as dashed lines.
For both plots we assume right-handed stop, t̃R.. Plot taken from Ref. [67].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

A
F
B

|∆Y|

mt=173.3 GeV

MSTW2008 pdf

NLO
NNLO
CDF
D0

Figure 13: The |∆y| differential asymmetry in pure QCD at NLO (blue)
and NNLO (orange) versus CDF [97] and DØ [96, 98] data. Error
bands are from scale variation only. For improved readability some
bins are plotted slightly narrower. The highest bin contains overflow
events. Plot taken from Ref. [95].

through NNLO and allow for EW corrections

AFB ≡
NEW + α3

S N3 + α4
S N4 + O(α5

S )

α2
S D2 + α3

S D3 + α4
S D4 + O(α5

S )
(29)

= αS
N3

D2
+

NEW

α2
S D2

(30)

+α2
S

 N4

D2
−

N3D3

D2
2

 − NEWD3

αS D2
2

+ O(α3
S ) .
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The first definition, eq. (29), uses exact results in both
numerator and denominator of eq. (28), while the sec-
ond, eq. (30), is the expansion of the ratio eq. (29) in
powers of αS .

In [95], we presented the differential asymmetries
with the unexpanded definition (29) and without EW
corrections (see figs. 13,14,15). The inclusive asymme-
try, see fig. 16, was computed with both definitions (29)
and (30) including EW corrections. The numerator fac-
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tor NEW has been taken from Table 2 in Ref. [90]. Only
for the inclusive asymmetry we determine the scale vari-
ation by keeping µR = µF In fig. 16 we observe that
the central values of the expanded (30) and unexpanded
(29) definitions of inclusive AFB differ significantly at
NLO but less so at NNLO. While the unexpanded defi-
nition (29) closely resembles the experimental setup, the
consistency of the two definitions within uncertainties
renders the question about the more appropriate choice
largely irrelevant. We also note the small scale error for
the expanded AFB definition (30) in pure QCD at both
NLO and NNLO, which appears too small to be realis-
tic. The inclusion of EW corrections, however, breaks
this pattern and brings the scale dependence in line with
the unexpanded definition eq. (29). Therefore, follow-
ing the previous literature, we chose as our final pre-
diction ASM

FB = 0.095 ± 0.007 (scenario 10 in fig. 16)
which is derived with the expanded definition (30) and
includes EW [90] corrections.

In contrast to the negligible approximate NNLO
QCD correction to AFB implied by soft-gluon resum-
mation [82, 83], we find that the exact NNLO QCD cor-
rection to the inclusive AFB is, in fact, large. Our result
brings the SM prediction for the inclusive asymmetry in
perfect agreement with the measurement of the DØ col-
laboration and about 1.5σ below the value measured by
the CDF collaboration. The predicted differential asym-
metry, even without EW corrections, is in agreement
with the corresponding DØ measurements.

6. Conclusions

In this proceedings we have discussed the recent ad-
vances in precision top-quark physics at hadron collid-
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ers. In particular, we have explained what methods have
been used in the determination of the cross sections
at next-to-next-to-leading order in QCD. Furthermore,
we have shown that the measurement and theory com-
bined at the present level of precision allow for several
interesting applications. Future directions of progress
concern increasingly differential analyses including top-
quark decays. The projects we have described here form
an excellent basis for these studies.
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