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Abstract

The interpretation of experimental measurements at the LHC requires accurate theoretical predictions for exclusive
observables, and in particular the summation of soft and collinear radiation to all orders in perturbation theory. We
report on recent progress towards the automated calculation of multi-parton LHC cross sections at next-to-leading
order in QCD, including the summation of next-to-leading logarithmic corrections through the combination with
parton showers.
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1. Introduction

Theoretical calculations within fixed-order perturba-
tion theory allow for accurate predictions of inclusive
observables like total cross sections. The analysis and
interpretation of experimental signatures at the LHC,
however, require theoretical predictions for exclusive fi-
nal states, i.e. predictions for differential distributions or
cross sections with cuts on kinematic variables. Higher-
order calculations for such exclusive final states in-
volve in general large corrections from soft or collinear
parton emission, which need to be summed to all or-
ders. An efficient way to achieve such a summation
is through a parton shower. Parton showers typically
include the leading logarithmic contributions from soft
and collinear gluon or quark emission to all orders in
perturbation theory. They form a central part of Monte
Carlo event generators and are thus essential to con-
nect theoretical models with realistic experimental sig-
natures. On the other hand, standard parton shower
event generators often rely on leading-order expressions
for the hard scattering processes and can therefore not
predict inclusive cross sections accurately.

A central goal of recent and current theoretical work
in LHC phenomenology is thus the automated calcula-
tion of next-to-leading (NLO) LHC cross sections in-
cluding the summation of large corrections from multi-

ple quark and gluon emission through parton showers.
Such a calculation should combine the accuracy of NLO
predictions for inclusive cross sections with the power
of parton shower Monte Carlo programs to reliably de-
scribe differential distributions and cross sections with
cuts on kinematic variables. A naive combination of
NLO calculations with parton showers would, however,
lead to double counting of higher-order contributions
that are included in both the NLO cross section and the
parton shower. These contributions have to be identi-
fied and subtracted from the calculation by means of a
matching procedure.

Much work in recent years has been devoted to the
formulation of matching schemes that allow for a con-
sistent combination of parton showers and NLO calcu-
lations including loop-corrections [1–16]. So far, how-
ever, only few publicly available computer codes exist
that implement such schemes, including in particular
Mc@NLO [17], Powheg [18], Sherpa [19] and Mad-
graph5 aMc@NLO [20]. The problem of double count-
ing contributions that are included in both the NLO cal-
culation and the parton shower has been solved in all
approaches in a similar way: The parton shower evolu-
tion is generically described by a Sudakov factor of the
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form

exp
(
−

∫ ∞

Q2

dq̄2

q̄2

∫ 1

0
dz

αs

2π
Pg/q(q̄2, z)

)
,

shown here for gluon emission off a quark with virtu-
ality Q2. In the collinear limit q̄2 → 0 the function
Pg/q(q̄2, z) reduces to the Altarelli-Parisi splitting func-
tion. The Sudakov factor includes short-distance con-
tributions which are also part of the NLO cross section
and which can be identified by expanding the exponen-
tial in powers of αs. When combining parton showers
with NLO calculations these contributions need to be
subtracted to avoid double counting.

Early work by many authors has focused on imple-
menting specific processes into the Mc@NLO program
and within the Powheg framework. While the orig-
inal Mc@NLO code is very successful and now in-
cludes a large number of processes, it is tied strongly to
the parton shower of Herwig (both Herwig6 and Her-
wig++). This restriction has been lifted recently within
Madgraph5 aMc@NLO, which is not only fully au-
tomatic, but also parton shower independent and may
be used with various versions of Herwig and Pythia.
We note that Sherpa contains an implementation of
Mc@NLO as well. Powheg, on the other hand, allowed
for matching with a generic parton shower from the be-
ginning and could thus be interfaced with various Monte
Carlo programs. In practice, the implementation of spe-
cific processes has been greatly simplified thanks to the
Powheg-Box tool. In each of the frameworks, multiple
parton emission is summed at the leading-logarithmic
(LL) level only (although leading-color subleading log-
arithmic effects might be included in parton showers
based on NLO subtraction schemes, such as the Catani-
Seymour subtraction), and the results can thus not com-
pete with the accuracy of dedicated resummation calcu-
lations which are routinely performed at next-to-leading
logarithmic accuracy (NLL).

The formulation and improvement of parton showers,
which are in general based on various assumptions and
approximations, has also been addressed by various au-
thors recently [21–37]. Notably, Refs. [23, 26, 27, 32]
have proposed a parton shower that includes quantum
interference, spin correlations and sub-leading color ef-
fects. Interference is treated in standard parton showers
only approximately by means of angular ordering, while
spin information is generally ignored completely. Spin
correlations, on the other hand, are crucial for example
to explore new physics models in cascade decays at the
LHC. While Refs. [23, 26, 27, 32] describe the theoret-
ical formulation of parton showers with quantum inter-
ference, the first implementation [35] so far is based on

the standard spin-averaged and leading-color treatment
of parton splitting only.

The set-up of the parton shower also has implica-
tions for the matching with NLO calculations. If the
splitting functions of the parton shower, Pi j(q̄2, z), and
the momentum mapping follow closely the definition
of the subtraction terms used to regularize the soft and
collinear divergences in the NLO calculation, then the
matching is simplified considerably. With that in mind,
various authors have formulated parton showers that are
based on commonly used subtraction schemes [25, 24].

To improve on existing NLO plus parton shower im-
plementations, quantum interference contributions, spin
correlations and sub-leading color effects in the parton
shower should be included systematically. Ultimately,
one would like to develop a fast and numerically ro-
bust code for the automated calculation of multi-parton
LHC cross sections at next-to-leading order, including
the summation of next-to-leading logarithmic correc-
tions through combination with parton showers. In this
contribution we shall describe recent progress towards
this goal.

The article is structured as follows. In Section 2 we
shall describe the construction of a NLO subtraction
scheme as derived from a NLL parton shower, and its
implementation into the program package Helac-NLO.
Section 3 reports on the application of such a scheme for
the automated calculation of NLO-QCD corrections to
the production of four bottom quarks at the LHC. Sec-
tion 4 finally discusses progress towards developing and
implementing a NLL parton shower and the matching
with Helac-NLO. We conclude in Section 5.

2. Subtraction schemes for NLO-QCD calculations

In the following, a new subtraction scheme based on
a parton shower introduced by Nagy and Soper [23] is
described. This new subtraction has been implemented
in the publicly available Helac-Dipoles software [38]
and has already been tested in the calculation of the
NLO QCD corrections to pp → bb̄bb̄ + X production
at the LHC (see the next section for more details). Our
main motivation, however, was to provide a framework
for a simple matching between a fixed-order calculation
and the new parton shower. However, before address-
ing this issue, the problem of the integration of subtrac-
tion terms over the unresolved phase space needed to be
solved. This is the non-trivial part of any subtraction
scheme. Contrary to the usual practice at NLO, we did
not perform involved analytic integrations, but rather
used a semi-numerical approach. After a suitable pa-
rameterization, numerical integrations, inspired by re-
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cent NNLO methods [39], have been performed. This
has allowed us to cover both massless and massive cases
with comparable effort. Let us emphasize that our semi-
numerical approach distinguishes our work from earlier
publications on the subject presented e.g. in Refs. [40–
42].

Let us start with the inclusive NLO QCD cross sec-
tion for a generic process involving m + 1 final-state
QCD partons with momenta pa + pb → p1 + · · ·+ pm+1,
which can be written as follows

σNLO =

∫
m

dΦm A
B({p}m) Fm

+

∫
m+1

dΦm+1 A
R({p}m+1) Fm+1

+

∫
m

dΦm A
V ({p}m) Fm

+

∫ 1

0
dx

∫
m

dΦm(x) AC(x, {p}m) Fm

where

AB ≡ |MBorn|2 , AR ≡ |MReal|2 ,

AV ≡ 2<
[
MBorn (M1-Loop)∗

]
,

andMBorn,M1-Loop,MReal describe the Born, one-loop
and real-emission matrix elements, respectively. The in-
tegration measure for the m− and the m+1−parton phase
space is denoted by dΦm and dΦm+1, whereas Fm and
Fm+1 are the jet functions.

For m well separated hard jets, the Born contribution
is finite, whereas the virtual and the real-emission terms
are individually divergent due to the presence of soft and
collinear singularities. For an infrared-safe definition of
partonic jets, all soft and collinear divergencies that af-
fect the virtual and real corrections should cancel for the
inclusive cross section, except for the singularities aris-
ing from the emission of nearly-collinear partons off the
initial state, which are absorbed into a re-definition of
the parton distribution functions (PDFs). This absorp-
tion is achieved by introducing suitable collinear coun-
terterms, AC . However, the individual pieces, AV and
AR, still suffer from soft and collinear divergencies and
cannot be integrated numerically in four dimensions. To
solve this problem, local counterterms,AD, that are de-
signed to match the singular structure of the integrand
in the soft and collinear limits, can be introduced:

σNLO =

∫
m

dΦm A
B({p}m) Fm

+

∫
m+1

dΦm+1

[
AR({p}m+1) Fm+1 −A

D({p}m+1) Fm

]

+

∫ 1

0
dx

∫
m

dΦm(x)
[
δ(1 − x)

(
AV ({p}m) +

∫
1
AD({p}m+1)

)
+ AC(x, {p}m)

]
Fm .

They are defined on the (m + 1)-parton phase space,
denoted {p}m+1 and are subtracted from AR and added
back to AV after integration over the phase space of
the unresolved parton. This procedure, called subtrac-
tion method, makes the integrals individually conver-
gent and thus well suited for a Monte Carlo integration.

The construction of the local counterterms is inspired
by the well known property of the universal factoriza-
tion of QCD amplitudes in the soft and collinear limits.
The singular structure of an (m + 1)-parton squared am-
plitude for two partons pi and p j that become collinear
can be expressed as follows:

〈M({p}m+1)|M({p}m+1)〉sing ≈

〈M({p}(i j)
m )|

(
V†i j · Vi j

)
|M({p}(i j)

m )〉 ,

where |M({p}m)〉 is an amplitude for m on-shell exter-
nal partons, Vi j is an operator acting on the spin part
of the amplitude and {p}(i j)

m describes the reduced m-
parton kinematics in the limit where partons pi and p j

become collinear. The structure of the real-emission
contribution can therefore be reduced to the product
of a finite Born amplitude squared times a divergent,
collinear splitting kernel Ci j associated with the split-
ting pi → pi + p j :

AR({p}m+1) ≈ AB({p}(i j)
m ) ⊗ C(i j)(pi; pi, p j) ,

where ⊗ denotes spin correlations. When a parton p j

becomes soft, on the other hand, factorization can be
written in the following form:

〈M({p}m+1)|M({p}m+1)〉sing ≈∑
k, j

〈M({p}( j)
m )| (Ti · Tk) |M({p}( j)

m )〉 ,

where Ti, Tk are operators acting on the color part of the
amplitude and {p}( j)

m is the soft limit of the kinematical
configuration {p}m+1. In the limit where p j → 0, one
can write the real-emission contribution as

AR({p}m+1) ≈
∑
k, j

AB({p}( j)
m ) ⊗ S(k j)(pi, pk; pi, pk, p j) ,

where the factorization is expressed in terms of m soft
splitting kernels S(k j), one for each external parton, and
the symbol ⊗ denotes color correlations.

Factorization properties described so far dictate gen-
eral rules for constructing local counterterms for a given
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subtraction method. In the first step, a complete set of
transformations, which map the original m + 1 partons
phase space, {p}m+1, into a new one, { p̃}m, that describes
m on-shell partons, needs to be defined. Subsequently,
a set of splitting functions D(`)({ p̃}m, {p}m+1), matching
the behavior of the soft and collinear kernels in the sin-
gular limits, needs to be worked out. Consequently, the
local counterterms take the general form:

AD({p}m+1) =

N∑
`=1

AB({ p̃}(`)m ) ⊗D(`)({ p̃}(`)m , {p}m+1) .

There is a freedom in defining both mappings
and splitting functions away from the singular limits,
each choice leading to a different subtraction scheme.
The most widespread version is the so-called Catani-
Seymour scheme (CS) [43, 44], where the local coun-
terterms take the following form:

AD
CS({p}m+1) =

m+1∑
i, j,k=1

AB({ p̃}(i jk)
m ) ⊗ D(i jk)

CS .({ p̃}(i jk)
m , {p}m+1)

Here, each mapping { p̃}(i jk)
m is labeled by three parton

indices. For a large number, m, of external partons, the
number of mappings and matrix elements required by
the calculation scales cubically: NCS ∼ m3. For our
new Nagy-Soper subtraction scheme (NS), on the other
hand, we can write

AD
NS({p}m+1) =

m+1∑
i, j,k=1

AB({ p̃}(i j)
m ) ⊗ D(i jk)

NS ({ p̃}(i j)
m , {p}m+1)

=
∑
i, j

AB({ p̃}(i j)
m ) ⊗

∑
k

D
(i jk)
NS ({ p̃}(i j)

m , {p}m+1)

 .
Therefore, each mapping is characterized by two labels
{i j} only, which implies that NNS ∼ m2, i.e. the num-
ber of mappings and subsequent matrix element evalu-
ations is reduced by a factor m compared to the Catani-
Seymour case.

Our particular choice of the mapping and a form
of splitting functions for the Nagy-Soper subtraction
scheme can be found in Ref. [38]. Let us only mention
that the latter are based on the original matrix elements
for q → qg, g → qq̄ and g → gg. Let us also add here
that the general structure of the real-emission contribu-
tion to σNLO in this scheme takes the following form:

σRE ≡

∫
m+1

dΦm+1 [ AR({p}m+1) Fm+1

−

m+1∑
i,k, j=1

AB({p̃}(i j)
m ) ⊗D(i jk)({ p̃}(i j)

m , {p}m+1) Fm ]

+

m∑
i,k=1

∫
m

dΦm A
B({p}m) ⊗ I(ik)(ε, {p}m) Fm

+
∑

i={a,b}

m∑
k=1

∫ 1

0
dx

∫
m

dΦm(x) AB(x, {p}m)

⊗
[
K(ik)(x, {p}m) + P(ik)(x, µ2

F)
]

Fm ,

where I(ε) and K/P correspond to the integrated sub-
traction terms. More precisely I(ε) encodes the full
soft/collinear structure of the matrix element in the form
of single and double poles in ε = (d − 4)/2, with d
the number of space-time dimensions, together with a
finite part. The K/P operator consists of purely finite
pieces coming from the initial-state splitting (K) as well
as from the collinear counterterms (P) and involves an
additional integration over the momentum fraction x of
an incoming parton after splitting.

An important feature of the Nagy-Soper mapping,
that we would like to emphasize, is a change of all
spectator momenta at the same time. This fact im-
pacts the way the factorization of the phase space is
performed. While in the case of initial-state emission
there are no substantial differences with respect to the
Catani-Seymour scheme, the factorization is derived in
a slightly different way when the splitting occurs in the
final state. The Lorentz invariant phase space for a
generic final state with m + 1 partons is organized in
terms of recursive splittings

dΦm+1(pi, p j, k1, · · · , km−1; Q) =

d3 pi

(2π)d 2p0
i

d3 p j

(2π)d 2p0
j

d3k1

(2π)d 2k0
1

· · ·
d3km−1

(2π)d 2k0
m−1

×

(2π)d δd(Q − pi − p j − k1 − · · · − km−1)

=

∫ K2
max

K2
min

dK2

2π

∫ P2
max

P2
min

dP2
i j

2π
dΦm−1(k1, · · · , km−1; K) ×

dΦ2(Pi j,K; Q) dΦ2(pi, p j; Pi j) ,

where
Pi j = pi + p j , Q = K + Pi j ,

and K is the so-called collective spectator momentum
that is built by all spectator momenta

K =

m−1∑
i=1

ki .
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Moreover

K2
min = (mk1 + · · · + mkm−1 )2

K2
max = (

√
Q2 − mpi − mp j )

2

P2
min = (mpi + mp j )

2

P2
max = (

√
Q2 −

√
K2)2 .

The masses of the on-shell final-state partons are de-
noted by mpi ,mp j ,mki , while

√
K2 is the invariant mass

of the collective spectator. One can observe that

dΦm−1(k1, · · · , km−1; K) = dΦm−1(k̃1, · · · , k̃m−1; K̃) ,

which follows from the fact that the mapping K → K̃ is
a Lorentz transformation, and the phase space is Lorentz
invariant. In the frame where the total momentum Q is
at rest, the two-body phase space can be parameterized
in terms of angular variables,

dΦ2(Pi j,K; Q) =
1

8 (2π)d−2

λ(Q2, P2
i j,K

2)
d−3

2

(Q2)
d−2

2

∫
dΩd−1 ,

where dΩd−1 represents the solid angle in d dimensions
and λ is the standard Källen function,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz .

When the total momentum Q is at rest, the in-
tegral

∫
dΩd−1 for the two phase space elements

dΦ2(Pi j,K; Q) and dΦ2( p̃i, K̃; Q) is the same. This im-
plies that the Jacobian related to the mapping Pi j → p̃i

is given by

dΦ2(Pi j,K; Q) =

λ(Q2, P2
i j,K

2)

λ(Q2,m2
i ,K

2)


d−3

2

dΦ2( p̃i, K̃; Q) .

The phase space for the final-state emission can there-
fore be written in the fully factorized form

dΦm+1(pi, p j, k1, · · · , km−1; Q) =

dΦm( p̃i, k̃1, · · · , k̃m−1; Q) × dξ f in ,

where

dξ f in =
dP2

i j

2π

λ(Q2, P2
i j,K

2)

λ(Q2,m2
i ,K

2)


d−3

2

dΦ2(pi, p j; β p̃i + γQ︸      ︷︷      ︸
Pi j

)

is the measure of the splitting phase space in d dimen-
sions. The parameters β and γ are uniquely fixed by
setting

Q̃ = Q , K̃2 = K2 , p̃2
i = m2

i .

and are given by

β = 2

√√
(Pi j · Q)2 − P2

i j Q2

(m2
i + 2 Pi j · Q − P2

i j)
2 − 4 m2

i Q2
,

γ =
2 Pi j · Q + β (P2

i j − 2 Pi j · Q − m2
i )

2 Q2 .

Therefore, in the singular limit one would simply have
P2

i j = m2
i , β = 1, γ = 0 and p̃i = Pi j.

Figure 1: Parameterization of the angular variables for the final-state
splitting p̃i → pi + p j. Here p̃k is the spectator parton selected to
define the azimuthal variable φ j.

The phase space of the splitting has three degrees of
freedom in d = 4 dimensions. One possible way of
parameterization is to use Lorentz-covariant scalar pro-
ducts and splitting variables as proposed in Ref. [40].
This simple choice results in compact formulae of the
integrated dipoles for massless partons [41]. Applying
the same strategy to the fully massive case, however,
the kinematical bounds of the splitting become much
more complicated and the resulting expressions turn out
to be very cumbersome. To keep the final expressions
reasonably compact, we have adopted an alternative pa-
rameterization. For example, in the case of the final-
state emission, for a set of momenta { p̃}m the splitting
p̃i → pi + p j and the set of momenta {p}m+1 had to be
constructed out of three parameters that we have called
collinear, soft and azimuthal variables. In the singu-
lar limit, where P2

i j → m2
i , the collinear and the soft

variables have to correspond to the relative angle be-
tween the nearly-collinear partons, θi j, and the energy
of the unresolved parton, E j. On the other hand, the az-
imuthal variable, φ j, which is the second angular para-
meter uniquely fixes the kinematics of the splitting. Our
reference frame consists of an orthogonal set of axes
(x, y, z), where the z-axis is identified with the spatial
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direction of the vector p̃i, as shown in Figure 1. The
azimuthal variable is then the angle, which separates
the unresolved parton p j from the the x-z plane. Since
there is complete freedom in selecting the direction of
the x-axis, we have decided to place it in the plane p̃i-
p̃k, where p̃k is the momentum of the spectator. In the
frame, where the total momentum Q is at rest, the defi-
nition of the soft variable is as follows:

E j ≡

√
Q2 (P2

i j − m2
i )

P2
i j − m2

i + 2
√

Q2 (p̃0
i − cos θ j |~̃pi|)

.

It is convenient to divide this soft variable by its kine-
matically allowed maximum value to get a normalized
soft variable e:

e ≡ E j/Emax
j .

The integration of the splitting phase space in case of
the final-state emission runs over the variables

e ∈ [0, 1] ,

c ≡ cos θ j ∈ [−1, 1] ,

φ ≡ φ j ∈ [0, 2π] .

The soft and collinear limits correspond to e → 0 and
c→ 1, respectively.

For the calculation of the integrated subtraction terms
in the Nagy-Soper scheme, we have adopted the spin-
averaged version of the splitting functions as described
in Ref. [26]. Our goal is the integration in d = 4 − 2ε
dimensions over the whole phase space of the splitting.
However, as a consequence of the increased complex-
ity of the mapping, a fully analytic evaluation of the
integrals turns out to be demanding. Thus, as an alter-
native we have used numerical approaches to integrate
over the splitting phase space. More precisely, we have
decided to adopt a semi-numerical approach to consider
analytic integration when possible, and Monte Carlo in-
tegration otherwise. Since the general dependence of
the integrands on the azimuthal variable φ was simple
and all the azimuthal integrals could be classified into
three groups, we carried out this part of the integration
analytically. The dependence on the soft and collinear
variables was not as simple and led to more complicated
expressions that we treated numerically. Further details
can be found in the original publication [38].

2.1. Implementation in Helac-Dipoles

We have incorporated the new subtraction method
based on the Nagy-Soper formalism into the Helac-
Dipoles package, preserving at the same time all the

optimizations already available in the code. For a de-
tailed description of the package functionalities, we re-
fer to the existing literature [45, 46]. All elements of
the calculation that do not dependent on a specific sub-
traction scheme, like the Born matrix elements and the
color correlators, were already provided by the frame-
work of Helac-Dipoles. This fact has dramatically sim-
plified our implementation.

The construction of the Nagy-Soper subtraction terms
is dictated by the form of the splitting functions. They
contain generic spinors and polarization vectors, which
enables them to treat simultaneously fixed helicities as
well as random polarization states. We have provided
random polarization sampling as a further option avail-
able for the Nagy-Soper scheme. This is an alternative
to the existing random helicity sampling optimization,
which uses stratified sampling over the different (inco-
herent) helicity assignments of partons [45]. The option
for the spin sum treatment can be controlled by the user
in the configuration file dipoles.conf as described in
the Appendix of Ref. [46].

Besides random polarization sampling, which is an
important speedup in every calculation, we have also
provided random sampling over color, or color Monte
Carlo, for the subtracted real radiation part. This func-
tionality has provided an important speedup for matrix
elements with a large number of colored external states.
The general ideas from [47, 48] have been adopted,
which are also an essential ingredient of the Helac-
1Loop package [49].

Our implementation of the Nagy-Soper subtraction
scheme (NS) has been tested and compared to the
Catani-Seymour subtraction scheme (CS) for some spe-
cific processes. More precisely proton-proton collisions
at the LHC with a center-of-mass energy of 8 TeV
have been considered and the following partonic sub-
processes gg → tt̄bb̄g, gg → tt̄tt̄g, gg → bb̄bb̄g, gg →
tt̄ggg have been studied. They give dominant contribu-
tions to the subtracted real emissions at O(α5

s) for the
corresponding processes pp→ tt̄bb̄ + X, pp→ tt̄tt̄ + X,
pp → bb̄bb̄ + X and pp → tt̄ j j + X. Moreover, they
represent a high level of complexity and test almost all
aspects of the software, as they involve both massive
and massless states. We have imposed basic selection
cuts on jets

pT ( j) > 50 GeV, |y( j)| < 2.5, ∆R( j j) > 1 ,

which have been defined through the anti-kT jet algo-
rithm [50] with radius parameter R = 1. The mass of
the top quark was set to mt = 173.5 GeV and the bottom
quark was considered to be massless. Results have been
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presented for the NLO CT10 parton distribution func-
tions [51] with five active flavors and the correspond-
ing two-loop αs. The renormalization and factorization
scales were set to the scalar sum of the jet transverse
masses

HT =
∑

i

mT ( ji) ,

where for the top quark

mT (t) =

√
m2

t + p2
T (t)

and for light jets (also tagged bottom-jets)

mT ( j) = pT ( j) .

A factor of 1/4 has been included in the scales for all
but the gg → bb̄bb̄g process where µR = µF = HT has
been chosen instead.

In the following, a few examples from the compari-
son of both schemes are given. If not specified other-
wise, full summation over all color configurations has
been assumed together with random helicity sampling.
In Table 1, for example, the total number of subtrac-

Process Number of Number of Number of
Dipoles (CS) Dipoles (NS) FD

gg→ tt̄bb̄g 55 11 341
gg→ tt̄tt̄g 30 6 682
gg→ bb̄bb̄g 90 18 682
gg→ tt̄ggg 75 15 1240

Table 1: Number of Catani-Seymour (CS) and Nagy-Soper (NS) sub-
traction terms for dominant partonic subprocesses contributing to the
subtracted real emission contributions atO(α5

s ) for the pp→ tt̄bb̄+X,
pp → tt̄tt̄ + X, pp → bb̄bb̄ + X and pp → tt̄ j j + X processes at the
LHC. The number of Feynman diagrams (FD) corresponding to the
subprocesses is given as well.

tion terms that are evaluated in both schemes is shown.
Also given is the number of Feynman diagrams corre-
sponding to the subprocesses under scrutiny to under-
line their complexity. For each of the 2 → 5 processes,
five times less terms are needed in the NS subtraction
scheme compared to the CS scheme. The difference
corresponds to the total number of possible spectators,
which are relevant in the CS case, but not in the NS case.

Real emission cross sections are presented in Table 2,
again for the CS dipole subtraction and the new NS
scheme. All results have been obtained with the same
Monte Carlo statistics and the resulting relative errors

Process σCS
RE [pb] σNS

RE [pb]

gg→ tt̄bb̄g (28.39 ± 0.04) · 10−3 (28.59 ± 0.06) · 10−3

gg→ tt̄tt̄g (16.98 ± 0.02) · 10−5 (17.01 ± 0.03) · 10−5

gg→ bb̄bb̄g (66.24 ± 0.16) · 10−2 (66.06 ± 0.22) · 10−2

gg→ tt̄ggg (87.96 ± 0.07) · 10−1 (88.16 ± 0.08) · 10−1

Table 2: Real emission cross sections for dominant partonic subpro-
cesses contributing to the subtracted real emissions at O(α5

s ) for the
pp → tt̄bb̄ + X, pp → tt̄tt̄ + X, pp → bb̄bb̄ + X and pp → tt̄ j j + X
processes at the LHC. Results are shown for two different subtrac-
tion schemes, the Catani-Seymour (CS) dipole subtraction and the
new Nagy-Soper (NS) scheme, including the numerical error from the
Monte Carlo integration.

Process tCS [msec] tNS [msec] tRE [msec]

gg→ tt̄bb̄g 24.8 13.2 6.5
gg→ tt̄tt̄g 35.7 18.5 11.2
gg→ bb̄bb̄g 26.6 16.2 10.1
gg→ tt̄ggg 214.8 108.2 48.7

Table 3: The CPU time needed to evaluate the real emission matrix
element together with all the subtraction terms for one phase space
point for two subtraction schemes, namely Catani-Seymour, tCS, and
Nagy-Soper, tNS. For comparison, we also give the CPU time for the
pure real emission matrix element calculation, tRE. All numbers have
been obtained on an Intel 3.40 GHz processor with the Intel Fortran
compiler using the option -fast.

Process σCS
RE,COL [pb] σNS

RE,COL [pb]

gg→ tt̄bb̄g (28.35 ± 0.14) · 10−3 (28.77 ± 0.14) · 10−3

gg→ tt̄tt̄g (17.00 ± 0.03) · 10−5 (17.01 ± 0.04) · 10−5

gg→ bb̄bb̄g (65.71 ± 0.50) · 10−2 (67.00 ± 0.66) · 10−2

gg→ tt̄ggg (88.04 ± 0.37) · 10−1 (87.76 ± 0.31) · 10−1

Table 4: Real emission cross sections for dominant partonic subpro-
cesses contributing to the subtracted real emissions at O(α5

s ) for the
pp → tt̄bb̄ + X, pp → tt̄tt̄ + X, pp → bb̄bb̄ + X and pp → tt̄ j j + X
processes at the LHC. Results are shown for random color sampling
for two different subtraction schemes, the Catani-Seymour (CS) dipole
subtraction and the new Nagy-Soper (NS) scheme, including the nu-
merical error from the Monte Carlo integration.

are well below 1%. We observe that the difference be-
tween two evaluations of a given cross section is at most
twice the sum of the corresponding errors. In Table 3,
the time measured in milliseconds, needed to evalu-
ate the real emission matrix element and the subtrac-
tion terms for one phase space point is shown. The NS
is scheme is typically twice as fast as the CS scheme,
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Process σNS
RE,POL [pb]

gg→ tt̄bb̄g (28.50 ± 0.06) · 10−3

gg→ tt̄tt̄g (17.01 ± 0.03) · 10−5

gg→ bb̄bb̄g (66.23 ± 0.20) · 10−2

gg→ tt̄ggg (88.16 ± 0.07) · 10−1

Table 5: Real emission cross sections for dominant partonic subpro-
cesses contributing to the subtracted real emissions at O(α5

s ) for the
pp→ tt̄bb̄+X, pp→ tt̄tt̄+X, pp→ bb̄bb̄+X and pp→ tt̄ j j+X pro-
cesses at the LHC. Results are shown for random polarization sam-
pling for the new Nagy-Soper (NS) subtraction scheme, including the
numerical error from the Monte Carlo integration.

but still a factor of about two slower than the evalua-
tion of the real emission matrix element. Overall, both
schemes, with their different momentum mappings and
subtraction terms, show a comparable performance and
give the same results for total real emission cross sec-
tions.

The performance of Monte Carlo sampling over color
and polarization has also been studied. In Table 4 we
present real emission cross sections, which have been
evaluated with random color sampling, for both subtrac-
tion schemes. We observe agreement with the results
presented in Table 2, where a summation over all color
flows has been performed. One should note that in the
case of the MC summation the absolute errors are 3 − 4
times higher. In order to obtain the same absolute er-
rors as for results including a summation of color flows,
9 − 16 times more events need to be evaluated. How-
ever, the average number of color flows corresponding
to a random color configuration, which is evaluated per
phase space point, is dramatically reduced. The over-
all time to obtain the same result is therefore substan-
tially shortened. Our conclusion is thus that random
color sampling is a powerful approach, especially for
processes where the number of gluons is higher and ex-
ceeds the number of quarks.

Finally, in Table 5 real emission cross sections for
random polarization sampling for our new NS subtrac-
tion scheme are shown. They should be compared to the
numbers given in Table 2, where we have used random
helicity sampling. Perfect agreement is found.

To conclude this section, a complete implementation
of the Nagy-Soper subtraction scheme both for mas-
sive and massless partons is now available in the Helac-
Dipoles software. By design, the Nagy-Soper scheme
has less kinematical mappings and is, therefore, faster.
On the other hand, we have observed that the absolute
error of the most costly (in terms of computational time)

subtracted real emission contribution was slightly worse
for Nagy-Soper than for Catani-Seymour. In the end,
we conclude that both schemes are similar in terms of
efficiency. We did not consider differences below a fac-
tor of two in error or time, which are moreover process
dependent, a reason to prefer either scheme. There are
two advantages of our implementation: First, we can
now perform better tests when calculating fixed order
NLO QCD corrections by computing real radiation in
two different schemes. A case study is described in the
next section. Second, the integrated subtraction terms
facilitate the matching of the fixed order calculation and
the Nagy-Soper parton shower with quantum interfer-
ence. This part is described in Section 4.

3. A case study: NLO-QCD corrections to the pro-
duction of four bottom quarks at the LHC

The production of four bottom quarks, pp→ bb̄bb̄ +

X, is an important background to various Higgs analyses
and new physics searches at the LHC, including for ex-
ample Higgs-boson pair production in two-Higgs dou-
blet models at large tan β [52], or so-called hidden valley
scenarios where additional gauge bosons can decay into
bottom quarks [53]. Accurate theoretical predictions
for the Standard Model production of multiple bottom
quarks are thus mandatory to exploit the potential of the
LHC for new physics searches. Furthermore, the calcu-
lation of the NLO QCD corrections to pp → bb̄bb̄ + X
provides a substantial technical challenge and requires
the development of efficient techniques, with a high de-
gree of automation. In Ref. [54] we have performed
an NLO calculation of bb̄bb̄ production at the LHC
with the Helac-NLO system [46]. In particular, we
have presented results based on the Nagy-Soper sub-
traction scheme introduced in Section 2. Two calcula-
tional schemes have been employed, the so-called four-
flavor scheme (4FS) with only gluons and light-flavor
quarks in the proton, where massive bottom quarks are
produced from gluon splitting at short distances, and
the five-flavor-scheme (5FS) [55] with massless bottom
quarks as partons in the proton. At all orders in pertur-
bation theory, the four- and five-flavor schemes are iden-
tical, but the way of ordering the perturbative expansion
is different, and at any finite order the results do not
match. Comparing the predictions of the two schemes
at NLO thus provides a way to assess the theoretical un-
certainty from unknown higher-order corrections, and
to study the effect of the bottom mass on the inclu-
sive cross section and on differential distributions. First
NLO results for pp → bb̄bb̄ + X in the 5FS have been
presented in Ref. [56]. In Ref. [54] we have not only
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provided an independent calculation of this challenging
process with a different set of methods and tools, but
also a systematic study of the bottom quark mass ef-
fects by comparing the 5FS and 4FS results. We note
that NLO results for the production of four top quarks
in hadron collisions have been discussed in Ref. [57].

The calculation of the process pp → bb̄bb̄ + X at
NLO QCD comprises the parton processes gg → bb̄bb̄
and qq̄ → bb̄bb̄ at tree-level and including one-loop
corrections, as well as the tree-level parton processes
gg → bb̄bb̄ + g, qq̄ → bb̄bb̄ + g, gq → bb̄bb̄ + q and
gq̄→ bb̄bb̄+ q̄. In the four-flavor scheme q ∈ {u, d, c, s},
and the bottom quark is treated massive. The bottom
mass effects are in general suppressed by powers of
mb/µ, where µ is the hard scale of the process, e.g.
the transverse momentum of a bottom-jet. Potentially
large logarithmic corrections ∝ ln(mb/µ) could arise
from nearly collinear splitting of initial-state gluons into
bottom quarks, g → bb̄, where the bottom mass acts
as a regulator of the collinear singularity. This class
of ln(mb/µ)-terms can be summed to all orders in per-
turbation theory by introducing bottom parton densities
in the five-flavor scheme. The 5FS is based on the ap-
proximation that the bottom quarks from the gluon split-
ting are produced at small transverse momentum. How-
ever, in our calculation we have required that all four
bottom quarks can be experimentally detected, and we
have thus imposed a lower cut on the bottom transverse
momentum, pT,b ≥ pmin

T,b . As a result, up to NLO ac-
curacy the potentially large logarithms in the process
pp→ bb̄bb̄+ X are replaced by ln(mb/µ)→ ln(pmin

T,b /µ),
with mb � pmin

T,b . µ, and are thus much less signif-
icant numerically. Therefore, for the process at hand,
the differences between the 4FS and 5FS calculations
with massive and massless bottom quarks, respectively,
should be moderate, but may not be completely negligi-
ble.

Our calculation has been performed with the au-
tomated Helac-NLO framework [46], which includes
Helac-1loop [49] for the evaluation of the numerators of
the loop integrals and the rational terms, CutTools [58],
which implements the OPP reduction method [59–62]
to compute one-loop amplitudes, and OneLoop [63] for
the evaluation of the scalar integrals. The singulari-
ties for soft and collinear parton emission are treated
using subtraction schemes as implemented in Helac-
Dipoles [45], see the discussion in Section 2. The
phase space integration is performed with the help of
the Monte Carlo generators Helac-Phegas [64–66] and
Kaleu [67], including Parni [68] for the importance
sampling.

The Helac-Dipoles package has been based on the
standard Catani-Seymour dipole subtraction formalism
[43, 44]. We have extended Helac-Dipoles by imple-
menting the new subtraction scheme [40, 41] based on
the momentum mapping and the splitting functions de-
rived in the context of an improved parton shower for-
mulation by Nagy and Soper [23], as described in Sec-
tion 2. The results presented in Ref. [54] have been the
first application of the Nagy-Soper subtraction scheme
for a 2 → 4 scattering process with massive and mass-
less fermions.

Below we shall present a number of selected numer-
ical results for the pp → bb̄bb̄ + X cross section at the
LHC at the centre-of-mass energy of

√
s = 14 TeV. We

discuss the impact of the NLO-QCD corrections, and
study the dependence of the results on the bottom quark
mass.

Let us first specify the input parameters and the
acceptance cuts we impose. The top quark mass,
which appears in the loop corrections, is set to mt =

173.5 GeV [69]. We combine collinear final-state par-
tons with pseudo-rapidity |η| < 5 into jets according
to the anti-kT algorithm [50] with separation R = 0.4.
The bottom-jets have to pass the transverse momentum
and rapidity cuts pT,b > 30 GeV and |yb| < 2.5, respec-
tively. The renormalisation and factorisation scales are
set to the scalar sum of the bottom-jet transverse masses,
µR = µF = µ0 = HT , with

HT = mT,b + mT,b̄ + mT,b + mT,b̄

and the transverse mass

mT,b =

√
m2

b + p2
T,b .

For the five-flavor scheme calculation with massless
bottom quarks the transverse mass equals the transverse
momentum, mT,b = pT,b. Note that the implementa-
tion of a dynamical scale requires a certain amount of
care, as the subtraction terms for real radiation have to
be evaluated with a different kinematical configuration
specified by the momentum mapping of the subtrac-
tion scheme. Comparing the results as obtained with
the Catani-Seymour subtraction and the Nagy-Soper
scheme, which is based on a different momentum map-
ping, provides an important and highly non-trivial inter-
nal check of the calculation.

3.1. Massless bottom quarks within the five-flavor
scheme

The NLO predictions for the inclusive cross section
are presented in Table 6 for the NLO MSTW2008 [70]
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parton distribution function (pdf), with five active fla-
vors and the corresponding two-loop αs. To study the
impact of the higher-order corrections, we also show
leading-order results obtained using the MSTW2008
LO pdf sets and one-loop running for αs.

Varying the renormalisation and factorisation scales
simultaneously about the central scale by a factor of
two, we find a residual scale uncertainty of approxi-
mately 30% at NLO, a reduction by about a factor of
two compared to LO. The K-factor, K = σNLO/σLO =

1.37, is sizeable. Note, however, that the K-factor is an
unphysical quantity and depends strongly on both the
default choice of scale and the pdf set [54].

In Ref. [54] we have also presented predictions for se-
lected differential distributions which are an important
input for the experimental analyses and the interpreta-
tion of the experimental data. Figure 2 shows LO and
NLO predictions for the transverse momentum of the
hardest bottom jet. We also show the theoretical uncer-
tainty through scale variation and the K-factor as a func-
tion of the transverse momentum. It is evident from Fig-
ure 2 that the NLO corrections significantly reduce the
theoretical uncertainty of the differential distributions,
and that the size of the higher-order effects depends on
the kinematics. For an accurate description of exclusive
observables and differential distributions it is thus not
sufficient to rescale the LO prediction with an inclusive
K-factor.

3.2. Massive bottom quarks within the four-flavor
scheme

Within the four-flavor scheme, bottom quarks are
treated massive and are not included in the parton
distribution functions of the proton. We define the
bottom quark mass in the on-shell scheme and use
mb = 4.75 GeV, consistent with the choice made in the
MSTW2008 four-flavor pdf [71].

The central cross section predictions in LO and NLO
for µ = HT using the 4FS MSTW2008 [71] pdf are
shown in Table 6, in comparison with the 5FS results.
We observe that the bottom mass effects decrease the
cross section prediction by 18% at LO and 16% at NLO.
The residual scale dependence at NLO is approximately
30%, similar to the 5FS calculation.

The difference between the massless 5FS and the
massive 4FS calculations has two origins. First, there
are genuine bottom mass effects, the size of which de-
pends sensitively on the transverse momentum cut. For
pmin

T,b = 30 GeV we find a 10% difference between the

Figure 2: Differential cross section for pp → bb̄bb̄ + X at the LHC
(
√

s = 14 TeV) in the 5FS as a function of the transverse momentum
of the hardest bottom jet. The dash-dotted (blue) curve corresponds to
the LO and the solid (red) curve to the NLO result. The scale choice
is µR = µF = µ0 = HT . The hashed area represents the scale un-
certainty, and the lower panels display the differential K factor. The
cross sections are evaluated with the MSTW2008 pdf sets.

Figure 3: Differential cross section for pp → bb̄bb̄ + X at the LHC
(
√

s = 14 TeV) in the 4FS and 5FS as a function of the transverse
momentum of the hardest bottom jet, normalised to the corresponding
inclusive cross section. The scale choice is µR = µF = µ0 = HT , the
cross sections are evaluated with the 5FS and 4FS MSTW2008 pdf
sets, respectively.

5FS and 4FS from non-singular bottom-mass depen-
dent terms. This difference decreases to about 1% for
pmin

T,b = 100 GeV. Second, the two calculations involve
different pdf sets and different corresponding αs. While
a 4FS pdf has, in general, a larger gluon flux than a 5FS
pdf, as there is no g → bb̄ splitting, the corresponding
four-flavor αs is smaller than for five active flavors. For
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pp→ bb̄bb̄ + X σLO [pb] σNLO [pb] K = σNLO/σLO

5FS 99.9+58.7 (59%)
−34.9 (35%) 136.7+38.8(28%)

−30.9 (23%) 1.37

4FS 84.5+49.7(59%)
−29.6(35%) 118.3+33.3(28%)

−29.0(24%) 1.40

Table 6: 5FS and 4FS LO/NLO cross sections for pp → bb̄bb̄ + X at the LHC (
√

s = 14 TeV). The renormalisation and factorisation scales have
been set to the central value µ0 = HT , and the uncertainty is estimated by varying both scales simultaneously by a factor two about the central
scale. Results are shown for the 5FS/4FS MSTW2008LO/NLO pdf sets.

pp → bb̄bb̄ + X the difference in αs is prevailing and
results in a further reduction of the 4FS cross section
prediction by about 5%. This latter difference should
be viewed as a scheme dependence rather than a bottom
mass effect.

In Figure 3 we present the differential distribution in
the transverse momentum of the hardest bottom jet, as
calculated in the 5FS with massless bottom quarks and
in the 4FS with mb = 4.75 GeV, normalised to the cor-
responding inclusive cross section. We find that the dif-
ference in the shape of the distributions in the 5FS and
the 4FS is very small.

To conclude this section, we have presented selected
results for the differential cross-sections for pp →

bb̄bb̄ + X at the LHC at the centre-of-mass energy of
√

s = 14 TeV [54]. We find that the higher-order cor-
rections significantly reduce the scale dependence, with
a residual theoretical uncertainty of about 30% at NLO.
The impact of the bottom quark mass is moderate for
the cross section normalisation and negligible for the
shape of distributions. The fully differential NLO cross
section calculation for the process pp → bb̄bb̄ + X
presented in Ref. [54] provides an important input for
the experimental analyses and the interpretation of new
physics searches at the LHC.

4. Parton shower with quantum interference and
matching

In this section, we will discuss the Nagy-Soper
shower in more detail, including its particular imple-
mentation in the C++ library Deductor [35]. Among
other topics, we will elaborate on the theoretical frame-
work necessary to include quantum interference effects.
Furthermore, we will point out the inherent ambiguities
of the approach. Ultimately, we will discuss the match-
ing to fixed order calculations at the next-to-leading or-
der in QCD, and present some results for a non-trivial
process: the production of a top-anti-top-quark pair in
association with a jet in hadronic collisions. This sec-
tion is based on [72].

4.1. Basic concepts

We start from a generic 2 → m process, which is
defined by two initial state partons a and b and 1, ...,m
final state particles. Each particle is described by a set
of quantum numbers to define the flavor fi, spin si and
color ci of the particle and its momentum pi. The ini-
tial state parton kinematics is described by momentum
fractions, ηa and ηb, with respect to the original collid-
ing hadrons, instead of their momenta. Thus, a complete
parton ensemble can be described by1

{p, f , s, c}m ≡ {[ηa,− fa, sa, ca], [ηb,− fb, sb, cb],
[p1, f1, s1, c1], ..., [pm, fm, sm, cm]} .

The state of the parton shower evolution is described
by a quantum density matrix ρ, which gives the ’prob-
ability’2 to find a certain parton ensemble {p, f , s, c}m.
The expectation value of an observable F for any final
state multiplicity is given by

σ[F] =
∑

m

1
m!

∫
[d{p, f }m]

fa(ηa, µ
2
F) fb(ηb, µ

2
F)

4nc(a)nc(b) × flux

× 〈M({p, f }m)| F({p, f }m) |M({p, f }m)〉

=
∑

m

1
m!

∫
[d{p, f }m]Tr[ρ({p, f }m)F({p, f }m)] .

Here the 1/m! is the symmetry factor for identical par-
ticles in the final state and [d{p, f }m] is the m particle
phase space measure. fa/b(η, µ2

F) are the parton density
functions evaluated at the momentum fraction η and fac-
torization scale µ2

F . The factor 4 in the denominator is
the spin averaging factor. nc(i) represents the averaging
color factor for the initial state partons, where nc(q) = 3
and nc(g) = 8. The expectation value of F and the trace
in the second line are meant to be a summation over

1The minus sign for the initial state flavor is just a convention,
because all partons are considered as outgoing.

2Since ρ is related to color ordered amplitudes, it may become neg-
ative for subleading color configurations. Thus, one cannot naively
interpret ρ as a probability. Nevertheless, we use the terminology of
statistical mechanics.
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indices in color ⊗ spin space. The quantum density ρ
introduced in the second line, is thus given by

ρ({p, f }m) =
fa(ηa, µ

2
F) fb(ηb, µ

2
F)

4nc(a)nc(b) × flux
× |M({p, f }m)〉 〈M({p, f }m)|

=
∑
s,c

∑
s′,c′
|{s, c}m〉 ρ({p, f , s′, c′, s, c}m) 〈{s′, c′}m| .

(1)

It is useful to define basis vectors |{p, f , s′, c′, s, c}m),
such that

ρ({p, f , s′, c′, s, c}m) = ({p, f , s′, c′, s, c}m|ρ) .

One can then write the expectation value of the observ-
able F as

σ[F] = (F|ρ) .

A particularly important observable for the defintion of
the parton shower is the total cross section measurement
function. It is defined as

(1|{p, f , s′, c′, s, c}m) = 〈{s′}m|{s}m〉 〈{c′}m|{c}m〉 .

The shower evolution equation describes the propa-
gation of the quantum density matrix from some initial
shower “time”, t0, which represents the hard interaction,
to the final “time” tF in the low energy regime. The fi-
nal shower time tF characterizes the physical scale at
which parton emissions cannot be described perturba-
tively anymore. The definition of shower time t is not
unique and is explained later. The parton shower evolu-
tion will transform a few partons at the matrix element
level, to a realistic final state with jets typically made of
many partons. After this evolution, a phenomenologi-
cal hadronization model must be applied. The pertur-
bative evolution itself is described by a unitary operator
U(tF , t0). The observable F, after showering, has the
expectation value

σ[F] = (F|ρ(tF)) = (F|U(tF , t0)|ρ(t0)) .

The unitarity of the evolution operator is a consequence
of the requirement that it should not change the total
cross section. Thus (1|U(tF , t0)|ρ(t0)) = (1|ρ(t0)). The
evolution operator can be obtained from a differential
equation involving two operatorsHI(t) andV(t), corre-
sponding to the concepts of real and virtual corrections
respectively:

dU(t, t0)
dt

= [HI(t) −V(t)]U(t, t0) . (2)

Here HI(t) describes the emission of a resolved parti-
cle, i.e. the momenta, flavor, spins and color configura-
tion will change after its application. V(t) describes the

unresolved emission and therefore does not alter mo-
mentum or flavor configurations. Nevertheless it can
change color configurations, which will affect further
emissions. For convenience of calculations, the vir-
tual operator can be further decomposed into V(t) =

VE(t) +VS (t), whereVE(t) is diagonal in color space,
whileVS (t) is not. Interestingly, the evolution equation
takes the same form as the time evolution of a statistical
ensemble in Liouville space

∂ρ(t)
∂t

=
i
~

[ρ(t),H] = Lρ(t) ,

where the Liouville operator can be identified as L =

[HI(t) −V(t)].
Traditional parton showers are constructed using the

large Nc limit. Thus, the state is always color diagonal
implyingVS (t)→ 0. In this case, Eq. (2) yields

U(t, t0) = N(t, t0) +

∫ t

t0
dτ U(t, τ)HI(τ)N(τ, t0) ,

with the Sudakov form factor

N(t, t0) = T exp
(
−

∫ t

t0
dτV(τ)

)
.

Since V(t) is diagonal in the traditional approach,
N(t, t0) is a number and not a matrix in color space. In
the general case with non-diagonalV(t), it is not practi-
cal to exponentiate a matrix in color space. The idea is,
therefore, to exponentiate only the diagonal color part
VE(t), and treatVS (t) iteratively as a perturbation. This
can be justified by noting that the off diagonal color
contributions are always suppressed by a relative fac-
tor of 1/N2

c compared to the leading color contributions.
Therefore, the solution of Eq. (2) with full color evolu-
tion, using the decomposition ofV(t) = VE(t) +VS (t),
is given by

U(t, t0) = N(t, t0)

+

∫ t

t0
dτ U(t, τ)

[
HI(τ) −VS (τ)

]
N(τ, t0) .

with

N(t, t0) = T exp
(
−

∫ t

t0
dτVE(τ)

)
.

4.2. Real and virtual evolution operators

The real evolution operator, HI , describes the transi-
tion from an m-particle ensemble to an (m + 1)-particle
ensemble. This is achieved by splitting a chosen parton
into two, which would physically correspond to a decay
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of a slightly off-shell parton. The splitting is constrained
by flavor conservation, fl → f̂l + f̂m+1, and momen-
tum conservation, pl → p̂l + p̂m+1. The description of
the transition is ambiguous, as only the singular limits
of amplitudes are uniquely determined in QCD. After
emitting a particle, it is necessary to correct the mo-
menta in the event in order to ensure momentum con-
servation and preserve the on-shellness of all particles.
This is done by certain momentum mapping operators,
which define momenta and flavors of the new ensemble

{ p̂, f̂ }m+1 = Rl({p, f }m) . (3)

where l ∈ {a, b, 1, ...,m}. In Deductor, a global mo-
mentum mapping has been chosen. Whenever a par-
ticle is emitted, the momentum of all final state par-
ticles is affected, see the discussion in Section 2. In
contrast, e.g. the Sherpa [19] parton shower is based on
Catani-Seymour dipoles [43], which have local momen-
tum mappings. In this case a single parton momentum
is modified. An explicit description of the original mo-
mentum mapping used in Deductor can be found ei-
ther in Ref. [23] or in Ref. [38]. Recently, the initial
state momentum mapping has been slightly modified.
A study [31] showed, that the generated pT spectrum in
pp → Z strongly depends on the momentum mapping
for initial state parton splittings. For this reason, De-
ductor uses a momentum mapping, which allows for an
improved resummation of higher-order corrections [36].

Besides momentum and flavor mapping operators,
HI(t) contains splitting functions which correspond to
the factorisation of amplitudes in the soft, collinear and
soft-collinear limits. In these limits the amplitude can
be written as

|M({ p̂, f̂ }m+1)〉 = v({ p̂, f̂ }m+1) |M({p, f }m)〉 .

The operator v({p̂, f̂ }m+1) acts in color and spin space.
The behaviour of amplitudes in singular limits translates
into a similar behaviour of the density matrix, which can
be written more explicitly as

ρ({ p̂, f̂ }m+1) ∼∑
l,k

T †l ( fl → f̂l + f̂m+1)V†l ({ p̂, f̂ }m+1)ρ({p, f }m)

× Vk({p̂, f̂ }m+1)Tk( fk → f̂k + f̂m+1) ,
(4)

where T †l ( fl → f̂l + f̂m+1) is an operator in color
space, while V†l ({ p̂, f̂ }m+1) is an splitting operator in
spin space. The general prescription to obtain De-
ductor’s splitting functions Vl has been summarised

in [38], whereas the complete set of splitting functions
can be found in [23].

The approximation in Eq. (4) can be cast into an op-
erator equation, |ρm+1) =

∑
l Sl|ρm). The operator Sl

describes all possible splittings of the emitter parton l.
HI(t) is then defined by the splitting operators Sl at a
fixed shower time Tl({p, f }m

HI(t) =
∑

l

Slδ (t − Tl({p, f }m)) , (5)

where the sum runs over all possible emitters l. The
shower time Tl({p, f }m) corresponds to an infrared sen-
sitive scale, discussed in Section 4.4.

The virtual evolution operator, V(t), represents the
unresolved virtual corrections. Nevertheless its con-
tent is fixed due to the unitarity condition of the parton
shower. By applying (1| from the left and |ρ) from the
right to Eq. (2) one obtains

(1|HI(t) −V(t)|ρ(t)) = 0 ,

which should be valid for any |ρ(t)). Parton shower
unitarity corresponds to simplified virtual corrections,
whose main function is to cancel the divergences of the
real corrections. In order to obtain an expression for
V(t), we write

(1|V(t)|{p, f , c′, c, s′, s}m) = (1|HI(t)|{p, f , c′, c, s′, s}m) .

This equation has an ambiguous solution in color space.
We shall not reproduce here the explicit form for V(t)
used in Deductor. It can be found in [23].

4.3. Logarithmic accuracy

In the previous section, we discussed the real and vir-
tual evolution operators. While they allow for an ex-
act treatment of color, the current implementation of
Deductor is based on the so-called LC+ approxima-
tion [32], which amounts to only allowing for color
evolution without non-local modifications of the color
state. In this case, we identify VE(t) = VLC+(t) and
VS (t) = ∆V(t) = V(t) −VLC+(t).

The color diagonal part of the virtual operator will be
exponentiated, which yields a parton shower formula-
tion similar to the traditional one. The evolution equa-
tion is given by

ULC+(t, t0) = NLC+(t, t0)+∫ t

t0
dτ ULC+(t, τ)HLC+

I (τ)NLC+(τ, t0) ,
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where

NLC+(t, t0) = exp
(
−

∫ t

t0
dτVLC+(τ)

)
.

The color off-diagonal splittings are included perturba-
tively

U(t, t0) = ULC+(t, t0)+∫ t

t0
dτ U(t, τ)

[
∆HI(τ) − ∆V(τ)

]
ULC+(τ, t0) , (6)

where ∆HI(t) = HI(t) − HLC+
I (t) and ∆V(t) = V(t) −

VLC+(t).
Let us investigate the logarithmic accuracy of observ-

ables. We suppose that the parton shower is used to cal-
culate an observable O which contains large logarithms
L of some invariant. For definiteness, we could image
this invariant to be the transverse momentum of a gauge
boson. Then 〈O〉 has the form

〈O〉 =
∑

n

c(n, 2n)αn
s L2n +

∑
n

c(n, 2n − 1)αn
s L2n−1 + · · · .

We further suppose that a shower with full color, gen-
erated by U(t, t0) reproduces all coefficients c(n, 2n)
and c(n, 2n − 1) correctly. Then ULC+(t, t0) will re-
produce c(n, 2n) exactly, because the LC+ approxima-
tion is exact with respect to the soft-collinear singu-
larities. One insertion of

[
∆HI(τ) − ∆V(τ)

]
generates

a contribution ∼ αsL because it contains a correction
for soft wide-angle gluon emission. This term mul-
tiplies contributions of order αn−1

s L2n−2 and, therefore,
corrects the coefficient c(n, 2n − 1). A second insertion
of

[
∆HI(τ) − ∆V(τ)

]
would only affect the coefficients

c(n, j ≤ 2n − 2). Therefore, one insertion is sufficient
to obtain NLL accuracy [32]. (An illustration of the
logarithm counting is given in Figure 4.) This implies
that NLL accuracy is in fact obtained with the evolution
equation

U(t, t0) = ULC+(t, t0)+∫ t

t0
dτ ULC+(t, τ)

[
∆HI(τ) − ∆V(τ)

]
ULC+(τ, t0) .

4.4. Shower time

Emissions generated by a parton shower are strongly
ordered in some kinematic variable in order to correctly
resum the leading logarithms. It turns out that the choice
of the ordering variable, which we call shower time, is
ambiguous. The essential approximation made in the

1

αsL
2 αsL αs

α2
sL

4 α2
sL

3 α2
sL

2 α2
sL α2

s

LL NLL

Figure 4: Illustration of the logarithm counting. One step in the ver-
tical direction is given by an insertion of ULC+ and a diagonal step is
given by an insertion of ∆HI (t) − ∆V(t). One can see, that two inser-
tions of ∆HI (t) − ∆V(t) only contribute to the coefficient of αn

s L2n−2.

parton shower description is that, in each step of the evo-
lution, all partons are on-shell. Thus, the parton shower
time should allow us to neglect the virtuality of a split-
ting parton. Here, we summarize the discussion from
Ref. [36] for final state radiation. The discussion for ini-
tial state radiation is analogous.

Consider a mother parton 0 which splits in two par-
tons, p0 → p1 + p2. The momentum p0 is given in light-
cone3 variables (+,−,⊥), where ~p0 denotes the trans-
verse momentum. We denote the virtuality of the parton
as v2

0. The momentum takes the form

p0 =

P,
~p 2

0 + m2
0 + v2

0

2P
, ~p0

 .
The daughter momenta are given in the Sudakov param-
eterisation as

p1 =

zP,
~p 2

1 + m2
1 + v2

1

2zP
, ~p1

 ,
p2 =

(1 − z)P,
~p 2

2 + m2
2 + v2

2

2(1 − z)P
, ~p2

 .
From momentum conservation we obtain

v2
0 =

((1 − z)~p1 − z~p2)2

z(1 − z)
+

m2
1

z
+

m2
2

1 − z
−m2

0 +
v2

1

z
+

v2
2

1 − z
.

In order to be allowed to neglect v2
1 and v2

2 at each step
of the evolution, we must require

v2
1

z
� v2

0 ,
v2

2

1 − z
� v2

0 .

3k± = (k0 ± k3)/
√

2 and k2 = 2k+k− − ~k 2
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Inserting the momentum fraction z

z =
p1 · Q0

p0 · Q0
,

1 − z =
(p0 − p1) · Q0

p0 · Q0
≈

p2 · Q0

p0 · Q0
,

where the last approximation is valid in the singular
limit p0 ≈ p1 + p2. Here, Q0 is the total final state
momentum. We finally arrive at the conditions

v2
1

2p1 · Q0
�

v2
0

2p0 · Q0
and

v2
2

2p2 · Q0
�

v2
0

2p0 · Q0
.

They should always be fulfilled. Therefore, we define

Λ2
l =
|( p̂l ± p̂m+1)2 − m2

l |

2pl · Q0
Q2

0 ,

and enforce the emissions to be ordered in Λ2
l . This can

be achieved by defining the dimensionless shower time
as

Tl({p, f }m) = − log
Λ2

l

Q2
0

 .
Generally, one can choose other ordering variables. E.g.
Pythia 8 [73] uses the transverse momentum, pT , in the
parton splittings to order the emissions, Herwig [74, 75]
uses angualar ordering, and Pythia 6 [76] uses a virtu-
ality ordering. A consequence of the Λ2 ordering is an
enlarged phase space for initial state splittings as com-
pared to pT ordering [36].

4.5. Ambiguities of the parton shower definition

As we have already pointed out at various places, the
construction of the parton shower is not uniquely de-
fined. In the following we list the main ambiguities.
They should be kept in mind, since future findings might
require modifications of their solutions.

Momentum Mappings: The way the parton shower
distributes momentum among the particles after
splitting may influence the resummation accuracy.
In case of Drell-Yan Z-boson production, a study
[31] showed that a different momentum mapping
[36] generates a different pT spectrum of the Z-
Boson.

Splitting functions: Splitting functions are only re-
quired to reproduce the singular limits of QCD ma-
trix elements, but can have an arbitrary finite re-
mainder.

Soft partition function: Soft emissions are spread on
different collinear emitters by means of a partition
function. The latter is, however, arbitrary. In [27]
it was argued, that the partition function should not
depend on the emitter’s energy. A choice, which
has not been explored, would be to make the parti-
tion function spin dependent.

Color treatment: In Deductor, the color diagonal part
of the evolution is exponentiated, whereas the off-
diagonal part is treated perturbatively. The sepa-
ration depends on the representation of the color
algebra, if the perturbative insertion of the off-
diagonal color operator is truncated. In Ref. [77]
a different approach for a full color treatment in a
parton shower has been proposed.

Spin treatment: The spin basis (not discussed in this
proceedings) is arbitrary. A different choice could
modify the spin weights in the spin evolution of the
shower.

Shower time: The parton shower emissions are
strongly ordered. As found in Ref. [36], Λ2

ordering provides a wider phase space for initial
state splittings than ordering in pT . In many cases,
nevertheless, different ordering variables give
the same results. A counter example would be,
e.g. angular ordering vs. pT ordering. Angular
ordering preserves color coherence of soft gluon
emissions, whereas pT ordering cannot account
for this effect [78].

PDF evolution: Traditional parton showers interface
LHAPDF [79] to obtain the ratio of PDFs occur-
ring in the backward evolution for initial state ra-
diation. Therefore, those parton showers explicitly
depend on the PDF kernels they use. Deductor
tries to minimize this dependence by evolving the
PDFs according to the shower splitting functions.
Since the splitting functions are not uniquely de-
fined, the PDF evolution is also not unique. Ad-
ditionally, if massive quarks are assumed in the
initial state, then the mass dependent terms of the
splitting kernel depend on the definition of the
shower time.

4.6. Matching at next-to-leading order

Matching NLO calculations with parton showers is
a widely explored subject and there already exist sev-
eral matching schemes [1–16]. The most popular ones
are the Powheg method [9, 13] and the Mc@NLO for-
malism [4, 7]. A general comparison between those two
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major schemes can be found in [16]. We choose to work
in analogy to Mc@NLO instead of Powheg, because we
are looking for a general solution, which can be eas-
ily automated. Before we discuss the problems of the
Mc@NLO formalism and their solutions, we want to
give a brief overview of the general objectives of parton
shower matching. This section presents original results
obtained in [72].

Independently of the accuracy of the matching we ob-
tain the following benefits:

Connection to low energy physics: Inclusive distri-
butions are not affected by showering. Neverthe-
less, the evolution of partons down to a scale tF

allows to include decays of unstable particles, as
well as the non-perturbative hadronization and
multiple interactions models.

Logarithmic accuracy: Infrared sensitive observ-
ables, which are ill defined at fixed order, are
replaced by finite predictions due to resummation
of large logarithms generated by collinear, soft
and soft-collinear splittings.

Matching at the next-to-leading order gives us further-
more:

Cross section normalization at NLO: When consid-
ering an inclusive observable F we want to keep
the fixed order normalization of the cross section.
Thus, the parton shower must not modify the total
cross section

(F|U(tF , t0)|ρ(t0)) = σNLO[F] .

High-pT emission according to matrix elements:
The parton shower is valid in the soft and collinear
regime. Thus, a parton shower description of
high pT emissions is not reliable. Since NLO
calculations are indeed valid in this region, one
wants to recover the NLO predictions for high pT

emissions after showering.

Meaningful events: Matching to parton shower is the
only way to define events at NLO. Without match-
ing, the weights of the real matrix element and
the subtraction terms belong to different kinemat-
ics and diverge separately. Due to the matching
scheme, they are combined and one obtains real
emission phase space configurations with a finite,
but not necessarily positive, weight.

We start our discussion of matching from the quan-
tum density matrix. For a generic 2 → m process at

NLO, one can write it in a perturbative expansion

|ρ) = |ρ(0)
m )︸︷︷︸

Born,O(1)

+ |ρ(1)
m )︸︷︷︸

Virtual,O(αs)

+ |ρ(0)
m+1)︸︷︷︸

Real,O(αs)

+O(α2
s) .

Note that we normalize the leading order contribution in
the counting of the coupling to be of order 1. |ρ(0)

m ) and
|ρ(0)

m+1) correspond to tree level matrix elements, whereas
|ρ(1)

m ) to the one-loop amplitude. The definitions of these
densities are analogous to the definition given in Eq. (1).
Based on this quantum density matrix, the observable F
after showering naively reads

σ[F]PS = (F|U(tF , t0)|ρ) =

∞∑
λ=m

1
λ!

∫
[dΦλ](F|Φλ)(Φλ|U(tF , t0)|ρ) ,

where we use the shorthand Φλ = {p, f , s′, c′, s, c}λ. The
quantum density |ρ) accounts for the hard matrix ele-
ments for λ = m,m + 1. Finally U(tF , t0) describes
the parton evolution during showering, as defined in Eq.
(6).

This naive description of the cross section suffers
from double counting, which is demonstrated as fol-
lows. The evolution equation of the parton shower has
an iterative solution. Since, at first, we are only inter-
ested in corrections up to O(αs), it is sufficient to ex-
pand the evolution equation linearly. Evolving the den-
sity state |ρ) from t0 to tF yields

|ρ(tF)) = U(tF , t0)|ρ) ≈

|ρ) +

∫ tF

t0
dτ

[
HI(τ) −V(τ)

]
|ρ(0)

m ) + O(α2
s) .

As we can see from the unitarity condition
(1|

[
HI(τ) −V(τ)

]
= 0, the total cross section

(1|ρ(tF)) is conserved. On the other hand, for inclusive
observables F one does not recover the NLO prediction,
because in general (F|

[
HI(τ) −V(τ)

]
, 0. Even if we

would not insists on recovering the NLO prediction,
the result would have to be considered wrong, since it
would contain real emission contributions twice: from
the real emission quantum density |ρ(0)

m+1), and from its
parton shower approximationHI(τ)|ρ(0)

m ).
This problem is solved by matching. The solution

is slightly simpler for processes, which can be defined
without any cuts at the Born level, e.g. pp → tt̄ or
pp → W+W−. At the end, we will obtain a color and
spin correlated version of the original Mc@NLO for-
malism. The additional parton shower contribution can
be cancelled by including the same term with an oppo-
site sign in the quantum density state |ρ). Thus, we can
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avoid double counting by introducing a modified quan-
tum density state

|ρ̄) ≡ |ρ) −
∫ tF

t0
dτ

[
HI(τ) −V(τ)

]
|ρ(0)

m ) + O(α2
s) . (7)

First notice that (1|ρ̄) = (1|ρ) = σNLO is unchanged, due
to the unitarity condition. On the other hand, consid-
ering U(tF , t0)|ρ̄) and expanding the evolution equation
again shows that the undesired parton shower contribu-
tions are cancelled up to O(αs). Notice that this cancel-
lation is non trivial, since the modified quantum density
|ρ̄), depends now explicitly on the parton shower split-
ting kernels and the choice of t0.

Let us investigate the expectation value for an in-
frared safe observable F given by the density state in
Eq. (7)

σ̄[F] =
1

m!

∫
[dΦm](F|U(tF , t0)|Φm)

×

[
(Φm|ρ

(0)
m ) + (Φm|ρ

(1)
m ) +

∫ tF

t0
dτ(Φm|V(τ)|ρ(0)

m )
]

+
1

(m + 1)!

∫
[dΦm+1](F|U(tF , t0)|Φm+1)

×

[
(Φm+1|ρ

(0)
m+1) −

∫ tF

t0
dτ(Φm+1|HI(τ)|ρ(0)

m )
]
.

Written in this way, the matched cross section suffers
from infrared divergences in the virtual |ρ(1)

m ) and real
contributions |ρ(0)

m+1), which appear in two separate inte-
grals. In the Mc@NLO approach one uses the parton
shower splitting kernels as subtraction terms, thus one
drops the infrared cutoff, which is imposed in the parton
shower, and takes the limit tF → ∞. In the subtracted
real cross section we can make use of the definition of
the real splitting operator in Eq. (5) and write∫ ∞

t0
dτHI(τ) =∑

l

Sl

∫ ∞

0
dτ δ(τ − tl)Θ(τ − t0) =∑

l

SlΘ(tl − t0) .

Here the sum runs over all external legs and Sl is the to-
tal splitting kernel for a given external leg. We want to
emphasize that Sl also contains completely finite con-
tributions like the massive g → QQ̄ splitting. tl is the
shower time defined in Section 4.4. Hence Θ(tl − t0)
represents the ordering of the emissions. The t0 depen-
dence provides a dynamical restriction of the subtrac-
tion phase space. The real subtracted cross section is

now finite in d = 4 dimensions, since tl is allowed to ap-
proach infinity and therefore the subtractions terms can
resemble the singular limits of the QCD matrix element.

Integrating the virtual operator V(τ) without an in-
frared cutoff is more complex, since there is an explicit
integration over the splitting variables. Thus, we have
to integrate this part in d = 4 − 2ε dimensions to extract
the 1/ε2 and 1/ε poles analytically. V(τ) takes the form∫ ∞

t0
dτV(τ) =

∑
l

∫
dΓl SlΘ(tl − t0) =

I(t0) + K(t0) ,

where Γl is the phase space of the additional parton. The
decomposition of the integrated V(τ) into I(t0), which
contains all integrated final-state splittings, and K(t0)
which contains the initial-state splittings is arbitrary.
We emphasize this structure only to show that the par-
ton shower naturally incorporates a subtraction scheme
as in the Catani-Seymour framework [43]. The only
part which cannot be generated by the parton shower are
the collinear counterterms, denoted by P, needed for the
PDF renormalization. Thus, the matched cross section
reads

σ̄[F] =

∫
[dΦm]

m!
(F|U(tF , t0)|Φm)

×
[
(Φm|ρ

(0)
m ) + (Φm|ρ

(1)
m ) + (Φm|[I(t0) + K(t0) + P]|ρ(0)

m

]
+

∫
[dΦm+1]
(m + 1)!

(F|U(tF , t0)|Φm+1)

×

(Φm+1|ρ
(0)
m+1) −

∑
l

(Φm+1|Sl|ρ
(0)
m )Θ(tl − t0)

 .
(8)

In practice Eq. (8) is not solved in a single step. Let us
define the shorthands (as in [4])

(Φm|S ) ≡ (Φm|ρ
(0)
m ) + (Φm|ρ

(1)
m )

+ (Φm|[I(t0) + K(t0) + P]|ρ(0)
m ) ,

(Φm+1|H) ≡ (Φm+1|ρ
(0)
m+1) −

∑
l

(Φm+1|Sl|ρ
(0)
m )Θ(tl − t0) .

One can use the total cross section

σ̄NLO[1] =
1

m!

∫
[dΦm](1|Φm)(Φm|S )

+
1

(m + 1)!

∫
[dΦm+1](1|Φm+1)(Φm+1|H) ,

to generate the hard events according to (Φm|S ) and
(Φm+1|H). The generated events are subsequently in-
terfaced to the parton shower and after the evolution
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one can investigate the desired observables. Thus, af-
ter showering one has performed the following integrals

σ̄[F]PS =
1

m!

∫
[dΦm](F|U(tF , t0)|Φm)(Φm|S )

+
1

(m + 1)!

∫
[dΦm+1](F|U(tF , t0)|Φm+1)(Φm+1|H) .

In the case of processes, which require cuts already
at Born level to yield a finite cross section, one has to
modify the matching prescription Eq. (8). Naively, one
would simply introduce a generation cut function given
by a state (FI | as follows

(Φm|S )→ (Φm|S )(FI |Φm) ,
(Φm+1|H)→ (Φm+1|H)(FI |Φm+1) .

Applying the parton shower to these ensembles, shows
that double counting is still present [72]. It turns out
that it is also necessary to modify (Φm+1|H) to be de-
fined with account of the generation cut in the subtrac-
tion phase space

(Φm+1|H)→ (Φm+1|H̃) ≡ (Φm+1|ρ
(0)
m+1)

−
∑

l

(Φm+1|Sl|ρ
(0)
m )(FI |Ql|Φm+1)Θ(tl − t0) ,

where we have introduced the momentum mapping op-
erator Ql with

Ql|Φm+1) = |Φm({ p̂, f̂ }m+1)) .

as the inverse transformation to that given by the oper-
ator Rl in Eq. (3). It can be shown that this matching
prescription is correct as long as the generation cuts are
looser than those implied by the final observable, and
the latter also only amounts to cuts.

4.7. Application: tt̄ j production at the LHC

The matching scheme of the previous subsection has
been implemented in the framework of Helac-NLO. In
order to test the implementation, we have chosen to
study the process of top-quark pair production in asso-
ciation with an additional jet at the Large Hadron Col-
lider. The results reported in this subsection are taken
from [72]. We point out that the NLO QCD correc-
tions to tt̄ j production have been previously obtained
in Refs. [80–83]. Furthermore, NLO + parton shower
predictions have been studied in Ref. [84, 85].

Results for tt̄ j production are given for pp collisions
at the LHC with a center-of-mass energy of 8 TeV. The
top quark is assumed to be stable and its mass is set to

mt = 173.5 GeV, while the bottom quark is considered
as massless. We use the NLO MSTW2008 PDF set [70]
with five active flavors and the corresponding two-loop
running of the strong coupling. We set the renormal-
ization and factorization scale to the top quark mass,
µR = µF = µ = mt, and the starting shower time t0 to
T0, with

e−T0 = min
i, j

2pi · p j

Q2
0

 ,

where Q2
0 is the partonic center-of-mass energy. Since

the tt̄ j process is divergent already at leading order, we
have to impose cuts on the hard jet in the event gen-
eration. These cuts have to be as minimal as possible
to ensure the inclusiveness of the events before they
are passed to the parton shower. We require the recon-
structed jets to have

pT ( j) > 10 GeV , |y( j)| < 5 ,

in the event generation, and

pT ( j) > 50 GeV , |y( j)| < 5 ,

in the final analysis of several observables. Jets are clus-
tered using the anti-kT jet algorithm [50], with R = 1
used at both the generation and analysis levels. Only
particles with pseudo-rapidity |η| < 5 are passed to the
jet algorithm. In the parton shower, the top quark is kept
as a stable particle (i.e. no decay allowed), hadroniza-
tion and multiple interactions are not included. In or-
der to address the theory uncertainties we investigated
the scale dependence on the unphysical scales µ and
T0. Here µ is varied between µ = mt/2 and µ = 2mt.
Whereas the parton shower starting time t0 is varied be-
tween t0 = T0/

√
2 and t0 = T0

√
2.

First we check the total cross section for tt̄ j produc-
tion. Including scale variation of µR we obtain our final
prediction as

σNLO(pp→ tt̄ j + X) = 86.04+5.10 (+6%)
−11.41 (−13%) pb ,

σNLO+PS(pp→ tt̄ j + X) = 85.94+3.81 (+4%)
−11.43 (−13%) pb .

These results are fully consistent, which proves that the
initial cuts during the generation phase were chosen ap-
propriately. Additionally we observe that the parton
shower does not improve the theory uncertainty of the
total cross section at all. This is expected because we
removed all parton shower effects for the total cross sec-
tion by construction. Nevertheless, we expect some re-
duction of the scale dependence for differential distri-
butions, because of the summation of the leading loga-
rithms.
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Several distributions showing a comparison be-
tween the fixed order NLO calculation and several
NLO+PS predictions (aMc@NLO+Pythia8 [20] and
Powheg+Pythia8 [84]) are shown in Figures 5 and 6.
pT ( j1 − rel) in Figure 6 is the scalar sum of the relative
transverse momenta of the particles in the first jet, de-
fined with respect to the jet axis in the frame where the
first jet has zero rapidity

pT ( j1 − rel) =
∑
i∈ j1

|~ki × ~p( j1)|
|~p( j1)|

,

where ki is the momentum of the ith particle in j1.
We observe that distributions shown in Figure 5,

which are not expected to be affected by showering ef-
fects have, to a good approximation, the same shape as
at fixed order. The resummation effect is visible first and
foremost in the transverse momentum distribution of the
tt̄ j system and other distributions shown in Figure 6. A
more detailed analysis is presented in [72].

5. Conclusions

We have discussed recent progress towards matching
next-to-leading QCD calculations for LHC processes
with parton showers at next-to-leading logarithmic ac-
curacy. Matched NLO+NLL calculations will provide
accurate predictions for differential distributions and ex-
clusive observables with experimental cuts, and are thus
essential to fully exploit the potential of the upcoming
LHC run.

To facilitate the matching of NLO calculations with
parton showers, the subtraction terms needed to com-
bine virtual and real corrections should by constructed
from the splitting functions that define the parton
shower. We have presented a subtraction scheme based
on a parton shower with quantum interference and its
implementation into the Helac-NLO software. The new
subtraction scheme has been applied to a number of
challenging processes, including the production of up
to four heavy quarks at the LHC. The new scheme per-
forms well compared to established methods. It not only
provides an important internal check of multi-parton
NLO calculations, but also forms the basis of current
work on parton shower matching at NLL accuracy.

First results of such a new NLO+NLL calculation
have been presented. We find that the resummation is
important for a wide range of phenomenologically rel-
evant distributions. Work is in progress to further im-
prove on the accuracy of the calculation by adding sub-
leading color effects and spin correlations.
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Figure 5: Differential distributions for tt̄ j production. Comparison
between NLO and several NLO+PS predictions.
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[6] M. Krämer and D. E. Soper, “Next-to-leading order QCD cal-
culations with parton showers. I: Collinear singularities,” Phys.
Rev. D 69 (2004) 054019.

[7] S. Frixione, P. Nason and B. R. Webber, “Matching NLO QCD
and parton showers in heavy flavor production,” JHEP 0308
(2003) 007.

[8] D. E. Soper, “Next-to-leading order QCD calculations with par-
ton showers. II: Soft singularities,” Phys. Rev. D 69 (2004)
054020.

[9] P. Nason, “A new method for combining NLO QCD with shower
Monte Carlo algorithms,” JHEP 0411 (2004) 040.

[10] Z. Nagy and D. E. Soper, “Matching parton showers to NLO
computations,” JHEP 0510 (2005) 024.

[11] C. W. Bauer and M. D. Schwartz, “Event generation from effec-
tive field theory,” Phys. Rev. D 76 (2007) 074004.

[12] W. T. Giele, D. A. Kosower and P. Z. Skands, “A Simple shower
and matching algorithm,” Phys. Rev. D 78 (2008) 014026.

[13] S. Frixione, P. Nason and C. Oleari, “Matching NLO QCD
computations with Parton Shower simulations: the POWHEG
method,” JHEP 0711 (2007) 070.

[14] C. W. Bauer, F. J. Tackmann and J. Thaler, “GenEvA. I. A New
framework for event generation,” JHEP 0812 (2008) 010.

[15] N. Lavesson and L. Lonnblad, “Extending CKKW-merging to
One-Loop Matrix Elements,” JHEP 0812 (2008) 070.

[16] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, “A critical
appraisal of NLO+PS matching methods,” JHEP 1209 (2012)
049.

[17] S. Frixione and B. R. Webber, “The MC@NLO 3.4 Event Gen-
erator,” arXiv:0812.0770 [hep-ph].

[18] S. Alioli, P. Nason, C. Oleari and E. Re, “A general framework
for implementing NLO calculations in shower Monte Carlo pro-
grams: the POWHEG BOX,” JHEP 1006 (2010) 043.

[19] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann,
F. Siegert and J. Winter, “Event generation with SHERPA 1.1,”
JHEP 0902 (2009) 007.

[20] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,
O. Mattelaer, H.-S. Shao and T. Stelzer et al., “The automated
computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simula-
tions,” JHEP 1407, 079 (2014).
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