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Abstract

This contribution gives an overview of a long-term study of quark-gluon matter under extreme conditions employ-
ing Euclidean lattice discretized Quantum Chromodynamics (QCD) with Wilson twisted mass fermions and improved
gauge actions. The analysis relies on methods and results of the European Twisted Mass Collaboration at zero tem-
perature. We will start for two mass-degenerate light flavour degrees of freedom with a thorough investigation of the
three-dimensional phase diagram of the bare coupling and the two mass-related parameters. Then for the same case
we are going to describe the search for the pseudo-critical behaviour at various quark mass values. We shall discuss
the behaviour of the (pseudo-)critical temperature Tc as a function of the (charged) pion mass mπ and the difficulty to
extract the chiral limit in order to establish or reject the conjectured O(4)-universality. For the two-flavour case we
shall further present very recent results for the thermodynamic Equation of State at non-zero temperature. Finally we
will provide a view on an ongoing first exploration of QCD thermodynamics under the inclusion of virtual strange
and charm quarks at their realistic mass values.
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1. Introduction

Half a century ago on the basis of a statistical boot-
strap model R. Hagedorn has argued that hadrons will
have to “boil” at some limiting temperature [1, 2].
Around 15 years later lattice gauge theory simula-
tions provided first numerical evidence for a transition
from hadronic matter to a quark-gluon plasma phase
[3, 4, 5, 6]. Since that time investigations of the ther-
modynamics of the quark-gluon system have reached
a stage, where its Equation of State (EoS) can be pre-
dicted with a reasonable accuracy taking into account
up to two quark generations. The EoS providing the
pressure p and the energy density ε as a function of the
temperature T is of large interest as input for the hy-
drodynamical description of the evolution of the plasma
created in relativistic heavy-ion collisions studied at
RHIC, BNL and ALICE@LHC, CERN (for a recent in-
troductory review see [7]). At the LHC the quark-gluon

plasma (QGP) is produced up to temperatures six times
higher than the estimated transition temperature, such
that - additionally to the strange quark - the charm quark
is expected to give a non-negligible EoS contribution.

On the lattice (for recent reviews see [8, 9, 10, 11,
12]) most efforts were undertaken with N f = 2 + 1 dy-
namical quark flavour degrees of freedom to reach real-
istically small values of the u- and d-quark masses, i.e.
the physical point, and to reliably extrapolate to the con-
tinuum limit [13, 14, 15]. Today the finite-temperature
transition from a quark confining and chiral symme-
try breaking hadronic phase into a deconfining and chi-
rally symmetric quark-gluon plasma phase at vanishing
baryonic chemical potential is known to happen very
smoothly at the physical point. Therefore, we often use
the notion crossover for it.

However, only very few calculations including dy-
namical charm have been performed until now in the
finite-temperature context [16, 17, 18, 19]. These stud-
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ies - as many others for N f = 2+1 - use computationally
cheap improved staggered fermion discretizations at the
cost of the theoretical uncertainty of the “rooting trick”
applied to the fermionic determinant [20, 21, 22, 23].

Thermodynamics with N f = 2 theoretically safe, but
numerically much more expensive Wilson quarks has
been extensively studied more than a decade ago by the
CP-PACS collaboration [24]. At that time the tempera-
ture values T = 1/(aNτ) close to the transition temper-
ature Tc were represented by a small number of lattice
steps a in the Euclidean time direction (Nτ = 4, 6) and in
this way producing strong lattice artifacts. The DIK col-
laboration continued this effort by enlarging Nτ up to 14
lattice units [25, 26]. More recently improved Wilson
fermions were also studied with N f = 2 + 1 dynamical
quark flavours on large lattices by the WHOT collabora-
tion [27] and by the Budapest-Wuppertal group [28, 29].

To our knowledge, so far no four-flavour (N f = 2 +

1+1) EoS results have been reported using Wilson-type
fermionic actions. They would be highly desirable in
order to check universality of the outcome of staggered
fermion projects.

This article describes the stage achieved with an on-
going lattice QCD project of the tmfT Collaboration,
participants of which are (or partly have been) E.-M.
Ilgenfritz, K. Jansen, M. Kirchner, M.P. Lombardo, O.
Philipsen, C. Pinke, C. Urbach, and L. Zeidlewicz to-
gether with the present authors. The project is aimed
at studying the high-temperature behaviour near and
also beyond the crossover for the Wilson fermion case
with a very efficient improvement ansatz in order to
handle the approach to the continuum limit. It repre-
sents also a special task within a large-scale project of
the DFG-funded Transregional Corroborative Research
Center Computational Particle Physics formulated by
K. Jansen and one of the present authors (M.M.-P.). For
improvement it employs the Wilson twisted mass dis-
cretization of the fermionic action [30, 31, 32] allowing
for an automatic O(a) improvement in terms of the lat-
tice spacing a (for a nice review see [33]). Moreover, it
relies very much on the simulation methods developed
by the European Twisted Mass Collaboration (ETMC)
and on its physical zero-temperature results (compare
with the contribution by K. Jansen in this edition [34]).

We started with two-flavour QCD and as a first
step, we explored the three-dimensional phase diagram
spanned in the parameter space of the inverse squared
bare coupling β, the bare quark mass m or Wilson
hopping parameter κ and of the additionally occuring
twisted mass parameter µ. The diagram turned out
to be quite complicated [35] with signatures for the
strong-coupling Aoki phase [36, 37, 38, 39], the rem-

nant of a first-order bulk transition [40] as well as a
cone-shaped surface representing the finite-temperature
transition [41].

The next step of our lattice QCD project at T > 0
in the presence of N f = 2 dynamical fermion flavour
degrees of freedom was the exploration of the finite-
temperature crossover phenomenon in the range of pion
mass values mπ = 300 MeV, . . . , 500 MeV [42]. The
focus was the determination of the (pseudo-) critical
temperature Tc from the behaviour of the chiral order
parameter, the Polyakov loop and their susceptibilities.
Moreover, we checked the universality of the magnetic
state equation, and from the dependence of Tc on mπ we
tried to extrapolate to the chiral limit in order to con-
firm or reject O(4) universality of the transition. As a
by-product we have computed also the Landau gauge
gluon and ghost propagators at non-zero temperature
[43] in the context of functional approaches like Dyson-
Schwinger equations (see e.g. [44]).

In the following we will report about these earlier
steps together with new results on the EoS in the case
N f = 2 [45] as well as on first investigations towards
the EoS for N f = 2 + 1 + 1 [46]. The central observable
of interest is the so-called trace anomaly of the energy-
momentum tensor or interaction measure I = ε − 3p
which can be shown to be directly related to the deriva-
tive of the average action with respect to the lattice spac-
ing. In both cases for N f we can rely on the T = 0
ETMC results [47, 48, 49, 50, 51, 52, 53] as well as
on own simulations in order to fix the lattice spacing in
physical units and to carry out necessary subtractions
from the T > 0 results for I. While for the N f = 2 case
the temperature T = 1/(a(β)Nτ) was varied by changing
the coupling parameter β = 6/g2

0, in the N f = 2 + 1 + 1
case we are applying the fixed-scale approach [27] by
varying the number of temporal lattice steps Nτ.

In Section 2 we introduce our lattice discretization
setup, while in Section 3 we will discuss the phase dia-
gram of Wilson twisted mass lattice QCD. For the two-
flavour case the pseudo-critical behaviour is discussed
for several pion mass values in Section 4. For the same
case for the first time the evaluation of the EoS is pre-
sented in Section 5. First results of the most challenging
case of the inclusion of dynamical strange and charm
quarks are presented in Section 6. In Section 7 we will
draw our conclusions.

2. The Wilson twisted mass setup of lattice QCD

Lattice discretizations of QCD in Euclidean space
can be introduced in many different ways. All of them
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satisfy local gauge invariance but may treat chiral prop-
erties as well as improvements with respect to lattice
artifacts in a different manner. We decided to follow the
choice by ETMC relying on improved versions of the
standard Wilson approach [33, 34]. We call them Wil-
son twisted mass lattice QCD, abbreviated tmLQCD.

Thus, we take the following gauge field action

S g[U] = β
(
c0

∑
P

[1 −
1
3

ReTr (UP)]

+c1

∑
R

[1 −
1
3

ReTr (UR)]
)
,

(1)

where UP and UR are the parallel transporters around a
plaquette loop P and a planar 2 × 1 rectangular loop
R of the gauge field in terms of the lattice link vari-
ables Ux,µ ∈ S U(3). The sums are extended over all
plaquettes (P) and all rectangles (R), respectively. As
ETMC for the N f = 2 flavour case with the mass-
degenerate light quark generation we are employing the
tree-level Symanzik improved version (c0 = 5/3, c1 =

−1/12), whereas in the extended case of two quark gen-
erations including also dynamical strange and charm
quarks (N f = 2 + 1 + 1) the Iwasaki version is taken
(c0 = 3.648, c1 = −0.331).

The matter field lattice action for the light quark sec-
tor reads

S l
f [U, χl, χl] =

∑
x

χl(x)
(
1 − κDW [U]

+ 2iκµγ5τ
3
)
χl(x) ,

(2)

where the fermion fields are written in the twisted ba-
sis {χl, χl} commonly used for numerical simulations.
This basis is related to physical fermion fields {ψl, ψl}

for maximal twist via

ψl =
1
√

2
(1 + iγ5τ

3)χl , ψl = χl
1
√

2
(1 + iγ5τ

3) . (3)

The Wilson covariant derivative acts on χ(x) as

DW [U]χ(x) =
∑
ν

((1 − γν) Uν(x) χ(x + ν̂)

+ (1 + γν) U†ν (x − ν̂) χ(x − ν̂)
)
.

(4)

The hopping parameter κ related to the bare (untwisted)
quark mass m (in lattice units) via κ ≡ (2m + 8)−1 has
to be set to its coupling dependent critical value κc(β)
as determined by ETMC [48] and interpolated to the
coupling values used in our studies. The twisted mass
parameter µ determines then the degenerate u-, d-quark
mass or the (charged) pion mass mπ. The contribution

of the strange and charm quark fields to the action in the
twisted basis can be represented as

S h
f [U, χh, χh] =

∑
x

χh(x) [1 − κDW [U]

+2iκµσγ5τ
1 + 2κµδτ3

]
χh(x) ,

(5)

where the additional twisted mass parameters µσ and µδ
have been introduced. One should keep in mind that
the strange and charm quark sectors are intertwined by
mixing under renormalization [52] and that parity and
flavour breaking effects - in tmLQCD becoming visible
mainly by the deviation of the neutral pion mass from
the charged pion one - are expected to disappear in the
continuum limit.

For studying the non-zero temperature case we simu-
late the theory with the quantum statistical measure de-
fined by the (Euclidean) partition function

ZQCD =

∫
[DU]

∫
DχlDχlDχhDχh × (6)

exp
(
−S g[U] − S l

f [U, χl, χl] − S h
f [U, χh, χh]

)
,

where the bosonic gauge field (fermionic quark fields)
have necessarily to satisfy periodic (anti-periodic)
boundary conditions in the Euclidean time direction x4
with Nτ lattice steps. The linear three-space extension
should satisfy the condition Nσ � Nτ. In this way
we describe a statistical ensemble in a thermodynamic
equilibrium at temperature T = 1/(aNτ) and in a volume
V = (aNσ)3. ZQCD is directly related to the free energy
of the system and in principle allows to get other ther-
modynamic observables as well as to derive the EoS, a
matter described later on.

3. Phase diagram of tmLQCD at T > 0

The β-κ phase diagram for two-flavour lattice QCD
with clover-improved Wilson fermions has been thor-
oughly studied for small time-extent Nτ = 4, 6 almost
15 years ago by the CP-PACS collaboration [54, 24].
A schematic view of the emerging phase structure is
shown in Fig. 1. The cusp of the strong coupling Aoki
phase [36, 37, 38, 39, 55] – the latter (in the infinite-
volume limit) characterized by a non-vanishing expecta-
tion value 〈ψiγ5τ

3ψ〉 indicating the spontaneous break-
down of a combined parity-flavour symmetry – seemed
tightly connected with the thermal transition line κt(β).

Here, we consider again N f = 2 Wilson fermions but
with the additional twisted mass term µ χiγ5τ

3χ. Hav-
ing included this term a more complicated 3D phase di-
agram emerges as long as κ is not yet fixed to its critical
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value κc corresponding to vanishing mπ. We have inves-
tigated this phase diagram by computing various “ob-
servables” like plaquette and Polyakov loop expectation
values and susceptibilities, the corresponding autocor-
relation times as well as the so-called pion norm along
several trajectories (compare with [56, 35]).

For a lattice size with Nτ = 8,Nσ = 16, we were
able to show [35] that the Aoki phase ends somewhere
inside the interval β = 3.0, . . . , 3.4. Around β = 3.4,
it becomes replaced by a region of metastabilities indi-
cating a first order transition area (the shaded area in
Fig. 2), a remnant of a transition known also in the zero-
temperature case [57, 58, 40, 59].

κc

0

κt

∞βcusp βqu β

?κ

Aoki

Figure 1: Schematic view of the phase structure as seen in older in-
vestigations [24] for a temporal lattice extent Nτ = 4, 6.

thermal transition/crossover
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∞

κ

β
κc(β, T = 0)

deconfinement
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confinement

Doubler region

?

Figure 2: Schematic view of the phase structure as found in our
work [35] with twisted mass fermions in the β-κ-µ diagram for Nτ = 8.

In what follows we are concentrating on the thermal
transition seen at not too small µ (otherwise we are still
running into the metastability region). Since the hop-
ping parameter κ and the twisted mass parameter µ are
directly connected with the bare quark mass

mq =

√
1
4

(
1
κ
−

1
κc

)2

+ µ2 , (7)

we wanted to see the cone-like structure of surfaces
of equal physics around the critical chiral line κ =

κc(β), µ = 0. For this aim we scanned the phase dia-
gram in a larger κ-range in order to see how the ther-
mal transition surface extends above κc(β). The result

is shown in the left panel of Fig. 3. For values β =

3.4, 3.45, 3.65, 3.75 from the steep rise of the Polyakov
loop

Re (〈L〉) =
1

N3
σ

Re〈
1

Nc
Tr

∑
x

Nτ∏
x4=1

U4 (x, x4)〉 (8)

(and also from maxima of its susceptibility not shown
here) we observe very clear signals for a thermal tran-
sition in κ. But additionally, for (β = 3.75, µ = 0.005),
we see a tiny κ-interval around κc = 0.166 where the
Polyakov loop exhibits a comparably small maximum,
which could have been easily overlooked. The latter
maximum becomes better visible by zooming into the
region around κc(β) also at larger β-values, see the right
panel of Fig. 3. For the Polyakov loop susceptibility (not

Figure 3: Left: κ-scans of the Polyakov loop for various β-values
(β = 3.4, 3.45, 3.65 for µ = 0.0068; β = 3.75 for µ = 0.005). Vertical
lines mark κc(β = 3.75). Right: Real part of the Polyakov loop for
β = 3.75, 3.775, 3.8, 3.9 and µ = 0.005. Vertical lines mark κc(β) for
β = 3.9, 3.8, 3.75 from left to right. See also [35].

shown here) with rising β we found already two clear
maxima at β = 3.8, κ ' 0.1635, 0.1660, i.e. not far from
κc ' 0.1640 [35].

Thus, with rising κ starting from values be-
low κc we pass through subsequent confinement-
deconfinement, deconfinement-confinement transitions
(or better crossovers) below and above κc, respectively,
followed again by a confinement-deconfinement tran-
sition far above κc. The latter transition surface ex-
tends to the next fermion doubler region in the phase
diagram. We have seen by additional β-scans at fixed
κ > κc(β) that the Creutz cone structure [41] that we
are exploring is connected with the upper confinement-
deconfinement transition by a phase transition surface
bending upward in κ at larger β. We tried to figure out
also how far the crossover or transition cone extends in
the µ-direction. From κ-scans for the Polyakov loop at
β = 3.75 and various µ-values we could conclude that
the inner region of the cone there is restricted to the in-
terval 0.014 < µ < 0.025.

Note that at β = 3.75 and κc(β) = 0.166 the value
µ = 0.005 can be related to a pion mass value mπ '
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400 MeV and a temperature T ' 210 MeV, i.e. values
to which we come back later.

Finally, in a recent master thesis [60] for small Nτ = 4
and at maximal twist κc(β) it was shown that for large
enough β one finds signatures for a first order critical
line µ = µt(β) very similar to the line κ = κt(β) in the
κ-β plane close to the first order transition in pure S U(3)
gauge theory.

Having understood the cone shape of the finite-
temperature transition or crossover in the β-κ-µ phase
diagram, we have always fixed κ at its maximal twist
value in order to ensure O(a) improvement.

4. Pseudocritical behaviour for N f = 2

At present for studies of the crossover behaviour we
are relying on simulations at (charged) pion masses
mπ ' {290, 360, 430 and 640} MeV (for historical rea-
sons we call these ensembles A, B, C, and D). Com-
pared to our previous paper [42] we have extended the
analysis for the ensembles B and C from lattice sizes
12 ∗ 323 and 12 ∗ 243 to ones with smaller Nτ. The en-
semble D with a lattice size 10 ∗ 243 is new [45]. The
scale setting via the Sommer scale parameter r0 [61] has
been repeated on larger sets of simulations at T = 0 with
elongated lattices in the meantime, which has slightly
shifted our values for mπ and also the estimates of the
pseudo-critical temperatures. The latter are determined
from the variance of ψψ over the gauge ensembles

σ2
ψψ

=
V
T

(〈
(ψψ)2

〉
−

〈
ψψ

〉2
)
. (9)

It corresponds to the disconnected part of the usual chi-
ral susceptibility and should show a maximum in the
region of Tc [62]. This is indeed the case for all our en-
sembles. The two representative cases B,D are shown in
the two upper panels of Fig. 4. From fitting a Gaussian
function to the Nτ = 12 data of σ2

ψψ
around the maxima

we extract the values of the pseudo-critical couplings βc

that are converted to a physical value of Tc using an in-
terpolation of a(β) [42, 45]. At leading order in chiral
perturbation theory and for a phase transition of second
order the pion mass dependence of Tc is expected to be
given as [63, 64]

Tc(mπ) = Tc(0) + A m2/(β̃δ)
π , (10)

where Tc(0) is the critical temperature in the chiral
limit and β̃ and δ are critical exponents corresponding
to the universality class of second order phase transi-
tions. We have restricted ourselves to the chiral scenar-
ios discussed in [42] including a first order scenario as

well as the O(4) and Z(2) second order scenarios, for
the latter assuming a second order endpoint located at
mπ,c = 0 MeV or alternatively at mπ,c = 200 MeV. The
result of fits of Eq. (10) to our data is shown in the lower
panel of Fig. 4. As the fitted curves are all describing the
given data quite well we conclude that the present set of
pion mass values can not discriminate among the differ-
ent chiral scenarios that have been studied. For the O(4)
model the fit prefers a value of Tc(0) = 150 (26) MeV.

Figure 4: Upper panels: Determination of Tc from σ2
ψψ

using a Gaus-
sian fit to the maxima for the B (left) and D (right) ensembles with
various lattice sizes (see [45]). Lower panel: Tc versus mπ determined
from the ensembles A12, B12, C12, D10 together with fits represent-
ing different scenarios for the chiral limit. The notation A12, . . . indi-
cates the linear lattice size in the x4-direction Nτ = 12, . . . (compare
with [42]).

Here we have not shown the other main observable
of our investigations, the Polyakov loop and its suscep-
tibility. The Polyakov loop as a function of the temper-
ature represents an order parameter for the deconfine-
ment transition in the limit of infinitely heavy quarks. It
can be used to locate the crossover region also at vary-
ing quark mass from its inflexion point Tin f along its rise
with T . Taking into account a proper renormalization of
the Polyakov loop for the different ensembles at given
mπ-values we found Tin f always above Tc [42, 45].

5. Equation of state for N f = 2

For deriving the EoS we start from the trace anomaly
of the energy-momentum tensor I(T ) = Θνν related to
the partition function by a total derivative with respect
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to the lattice spacing a along lines of constant physics
(LCP):

I
T 4 =

ε − 3p
T 4 = −

1
T 3V

(
d ln Z
d ln a

)
sub

= T
∂

∂T

(
p(T )
T 4

)
.

(11)
It is related to the pressure p (and to the energy density
ε) via integrating the last relation [65]. (. . .)sub means
that all expectation values are rendered finite by sub-
tracting the corresponding vacuum expectation values
at T = 0. The trace anomaly I contains derivatives of
the expectation values of all the terms in the lattice ac-
tion S =

∑
i biS i with respect to the bare coupling and

mass parameters bi and those of bi to the lattice spacing
a:

I
T 4 =

1
T 3V

∑
i

a
dbi

da

〈 ∂S
∂bi

〉
sub

= N4
τ Bβ

1
N3
σNτ

{
c0

3

〈
ReTr

∑
P

UP

〉
sub

+
c1

3

〈
ReTr

∑
R

UR

〉
sub

(12)

+Bκ 〈χ̄lDW[U]χl〉sub

−
[
2(aµ)Bκ + 2κc(aµ)Bµ

] 〈
χ̄liγ5τ

3χl

〉
sub

}
,

where the coefficients Bi are

Bβ = −a
dβ
da

, Bµ =
1

(aµ)
∂(aµ)
∂β

, Bκ =
∂κc

∂β
. (13)

Later on, in the four-flavour case N f = 2 + 1 + 1, one
has to add the terms related to the heavy fermion action
according to Eq. (5). We shall subtract terms in I/T 4

which by employing a Symanzik expansion turn out to
be lattice artifacts of order O(a2) in the limit of maximal
twist. For a derivation of this observation as well as
for a discussion of the T = 0 subtractions and of the
evaluation of the B-functions we refer to [45, 66]. How
well we were able to stay on the LCP while varying β,
κ = κc(β), and µ(β) can be judged from our plot of the
pion mass versus β (or temperature T ) in Fig. 5.

In Fig. 6 we show our final result for the trace
anomaly for the ensembles B,D of the pseudoscalar
masses under investigation [45]. In all cases we have
observed sizeable lattice artifacts in the height of the
maximum and even in the falling edge at larger temper-
atures. This is the reason, why we have employed a tree-
level correction as described in [13] which corrects the
trace anomaly by the continuum-to-lattice ratio of the
Stefan-Boltzmann limit values for the pressure (see Ref.
[67] for the Symanzik-improved gauge action and [68]

Figure 5: Pion mass values versus β as a quality check for our lines of
constant physics for all four fermion mass ensembles considered.

for the twisted mass fermion action). For a temperature
value close to the peak position of the trace anomaly
and at some higher temperature we have checked the
continuum limit extrapolations with and without tree-
level corrections. For a → 0 the values were found to
approach each other within the estimated errors. For the
corrected case - as expected - the a-dependence turned
out to be clearly weaker.

The peak value of the trace anomaly is a good indi-
cator for the universality of the results of different ap-
proaches. We notice that our peak value ' 3 for N f = 2
only weakly depends on the mass and lies in between
the values for the pure gauge case (N f = 0) [69] and the
one for N f = 2 + 1 at the physical point [15].

The evaluation of the pressure from the integral
technique proceeds by integrating the identity I

T 4 =

T ∂
∂T

(
p

T 4

)
with respect to the temperature along a LCP

p
T 4 −

p0

T 4
0

=

∫ T

T0

dτ
ε − 3p
τ5

∣∣∣∣∣∣
LCP

. (14)

We perform the integration Eq. (14) after having fitted
the following ansatz [13] to the available lattice data

I
T 4 =

(
1 +

a2

N2
τ

)
· exp

(
−h1 t̄ − h2 t̄2

)
×

(
h0 +

f0 {tanh ( f1 t̄ + f2)}
1 + g1 t̄ + g2 t̄2

)
, (15)

where t̄ = T/T0 and T0 is a free parameter in the fit.
Our final results for the pressure and the energy den-

sity as functions of the temperature are shown in Fig. 7
for the ensembles B and D, respectively [45].

6. Towards thermodynamics with N f = 2 + 1 + 1

As a next step we have started to investigate the QCD
thermodynamics taking into account strange and charm
quark degrees of freedom at their realistic mass values
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m±π [MeV] a [fm] Nτ × N3
σ statistics

364 0.0936 {5, 6, 7, 8, 9, 10, 11, 12} × 243 2k-7k
{13, 14} × 323 5k,27k

372 0.0823 {6, 7, 8, 10, 11, 12, 13, 14, 15, 16} × 323 2k-27k

Table 1: N f = 2 + 1 + 1 gauge field ensembles data of which are presented here. Lattice spacings are adopted from Ref. [70].

Figure 6: The tree-level corrected trace anomaly for the N f = 2 B
mass (upper panel) and D mass (lower panel) ensembles obtained for
different values of the temporal extent Nτ. Also shown is the result of
combined fits of the interpolation formula Eq. (15) to the Nτ = 8, 10
and 12 data (the latter only for the B case). For the B mass the results
obtained on the smaller spatial volume (Nσ = 24) are superimposed
slightly shifted for better visibility. The latter data however has not
been included in the fit (see [45]).

(see Eq. (5)) in a large interval of temperatures. The
charm degrees of freedom are expected to become vis-
ible in the EoS at sufficiently high temperatures above
Tc.

In order to fix the scale and to determine the scale-
dependent coefficients in the trace anomaly on the basis
of already existing ETMC-data we decided to employ
the fixed-scale approach in varying the temperature T =

1/(Nτa) by changing Nτ [27]. In this way we are in the
position to consider pion mass cases of approximately
370 MeV at different lattice spacings [70] (see Table 1),
nicely allowing us to compare with the N f = 2 case,
where we studied a 360 MeV pion mass (B ensembles).

We have computed the renormalized Polyakov loop
and also an appropriately subtracted light fermion chi-

Figure 7: Final result for pressure p and the energy density ε in units
of T 4 for the N f = 2 B (left) and D (right) mass ensembles [45]. The
interpolation of the trace anomaly used for integrating the pressure is
also shown. The arrow indicates the expected Stefan-Boltzmann limit
for the pressure. On top of the figures we indicate the temperature in
units of Tc.

ral condensate ratio defined in [42] as a function of the
temperature. Having done for N f = 2 a new scale fixing
with more ensembles and better statistics [45] we see
the curves with similar pion masses of 360 − 370 MeV
to be slightly shifted towards lower temperature values
for N f = 2 + 1 + 1 as compared to N f = 2 (see also our
preliminary presentation in [46]). Taking the strange
quark into account one can eliminate the divergence in
the light quark condensate by suitably subtracting the
strange quark condensate [71]:

∆l,s =
〈ψψ〉l −

µ
µs
〈ψψ〉s

〈ψψ〉T=0
l −

µ
µs
〈ψψ〉T=0

s
, (16)

where µ and µs denote the bare light and strange quark
masses. The strange quark condensate has been ob-
tained in the Osterwalder-Seiler setup [72, 31] which
avoids mixing in the heavy quark sector. The mass µs

has been determined as to reproduce the physical s̄γµs-
mass. The quantity ∆l,s does not show visible lattice
spacing artefacts over the whole range of temperatures
and exhibits a smooth order parameter behaviour (see
the left panel of Fig. 8).

The unrenormalized disconnected part of the chiral
susceptibility according to Eq. (9) can be nicely com-
pared with that of the B ensemble in the N f = 2 case
with a similar pseudoscalar mass. The pseudo-critical



F. Burger and M. Müller-Preussker / Nuclear Physics B Proceedings Supplement 00 (2015) 1–9 8

Figure 8: Left: Subtracted (renormalized) chiral condensate vs. T
at mπ ' 370 MeV for N f = 2 + 1 + 1. Right: Light quark chiral
susceptibility vs. T at mπ ' 370 MeV for N f = 2 + 1 + 1 and for the
N f = 2 B12 ensemble with mπ ' 360 MeV.

N f = 2 + 1 + 1 N f = 2
Tc [MeV] 184(4) 193(13)

Table 2: Pseudo-critical temperatures obtained from chiral suscepti-
bilities at mπ ' 370 MeV (N f = 2 + 1 + 1) and mπ ' 360 MeV
(N f = 2), respectively.

Tc value at N f = 2 + 1 + 1 is somewhat smaller (see
the right panel of Fig. 8). From a Gaussian fit we obtain
values as shown in Table 2.

7. Conclusions

In this report we gave a short overview of investi-
gations of the QCD thermodynamics within the lattice
approach employing dynamical Wilson fermions with
twisted mass terms in order to ensure automatic O(a)
improvement as advocated by the ETM Collaboration.
Our computations were carried out by a joint effort of
the tmfT Collaboration. As one normally has to do, we
started with an exploration of the phase diagram of the
lattice theory in the three-dimensional β-κ-µ space. The
phase structure turned out to be rather complicated but
locates the finite-temperature transition or crossover on
a cone-shape (pseudo-)critical surface.

Tuning our bare κ to its critical, i.e. maximal twist
value of vanishing pion mass we were then able to inves-
tigate the crossover behaviour in the two-flavour case at
several pion mass values ranging from 290 MeV to 640
MeV. Measuring the Polyakov loop, the chiral conden-
sate and the disconnected part of the chiral susceptibility
allowed us to locate the crossover region and to show the
dependence of the chiral (pseudo-) critical temperature
Tc as a function of the (charged) pion mass mπ. Unfor-
tunately, the mπ values turned out to be still too large
in order to discriminate between different scenarios of
approaching criticality in the chiral limit and therefore

to decide the fundamental question, whether the transi-
tion in this limit is of first or second order. In the same
two-flavour case we have shown also results of a care-
ful pilot computation of the EoS in the Wilson twisted
mass setup. For this aim the trace anomaly or interac-
tion measure was computed as a function of the tem-
perature. A tree-level correction of the results allowed
nicely to approach the continuum limit with lattices of
Nτ = 12 Euclidean time steps.

Finally, we have presented first results of a fixed scale
finite-temperature study of the QCD crossover with a
full dynamical second quark generation. We have con-
centrated on a single pion mass value at several lattice
spacings in order to estimate cutoff effects. From the
maximum of the disconnected part of the bare chiral
susceptibility we have estimated the temperature of the
chiral crossover and found it slightly shifted compared
with the N f = 2 case.

We are currently working on the analysis of the EoS
with the inclusion of the dynamical strange and charm
contributions at the same pion mass value as well as on
the data analysis at a pion mass well below 300 MeV.
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