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Abstract

We review simulations of lattice of QCD with chiral invariant overlap fermions and chirally improved maximally
twisted mass fermions. We discuss simulations with twisted mass fermions for N f = 2 flavours of mass degenerate
quarks and for the situation of N f = 2 + 1 + 1 flavours, where the strange and the charm quarks are taken into account
as active degrees of freedom. Results are presented for a number of physical quantities among which are the muon
anomalous magnetic moment, pseudo scalar masses and decay constants, quark masses, the pion scattering length
and the ρ-meson resonance. In addition, we discuss aspects of the simulations themselves and the non-perturbative
renormalization that has been performed. Finally, first result are given for simulations directly at the physical value of
the pion mass.
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1. Introduction

In this contribution to the proceedings of the Tran-
sregional Collaborative Research Center 9 “Computa-
tional Particle Physics” we report on an effort to develop
and test new formulations of lattice QCD and new algo-
rithms. In particular, the goal of this work has been to
develop a lattice fermion formulation and an algorithm
that allows for computations as close as possible to the
physical value of the pion mass. At the same time, the
lattice theory should possess an improved (if not exact)
chiral symmetry. In addition, the derived lattice theory
should be such that all physical quantities have lattice
artefacts that appear only at O(a2) thus avoiding linear
discretization effects as they appear for, e.g., standard
Wilson fermions.

Table 1 shows that this goal could be reached even
more than has been anticipated. In the table, we show
ratios of meson masses and meson decay constants that
were obtained directly at the physical value of the pion
mass, see also ref. [1, 2]. The lattice results are com-
pared to the corresponding data from the particle data
group (PDG) [3] and we find a nice agreement demon-

strating that we indeed have reached the physical value
of the pion mass and that lattice QCD reproduces the
measured meson masses and decay constants.

In fig. 1 we show, as an important quantity to detect
physics beyond the standard model, the leading order
hadronic light quark contribution to the muon anoma-
lous magnetic moment [4]. Here, lattice results are
shown that were obtained at unphysical values of the
pion mass and which needed to be extrapolated to the
physical pion mass. In addition, we show the results
from a direct calculation at the physical point. In this
case, the chiral extrapolation nicely agrees with the di-
rect computation. For other quantities, such as the nu-
cleon axial charge or the average momentum of a quark
in a nucleon, only the physical point calculations tend to
their experimental or phenomenologically determined
values, see [5].

In the following sections we want to illustrate, how
it became possible to perform at the end of this transre-
gional collaborative research center simulations directly
at the physical point.

The outline of this contribution is as follows. In sec-
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MDs/MK MDs/MD fK/ fπ fDs/ fD

lat. 3.96(2) 1.049(4) 1.197(6) 1.19(2)
PDG 3.988 1.0556(02) 1.197(06) 1.26(6)

Table 1: Comparison of ratios of meson masses and decay constants
obtained from our first computations at the physical point with the
corresponding values taken from the PDG.

tion 2 we discuss the starting point of this project, the
exploration of lattice fermions [6, 7] that respect an
exact, lattice modified chiral symmetry [8]. Although
these kind of lattice fermions are conceptually very ad-
vantageous, it turned out that they are computationally
very expensive, in fact, so expensive that presently they
almost cannot be used for dynamical fermion simula-
tions [9, 10]. We therefore switched to so-called twisted
mass fermions [11, 12] which are explained in sec-
tion 3. Section 4 is devoted to our first simulations with
twisted mass simulations with N f = 2 flavours of mass-
degenerate light quarks. In section 5, we discuss some
highlights from the simulations, scattering amplitudes
and the muon anomalous magnetic moment. Our efforts
to carry through a non-perturbative renormalization is
outlined in section 6 and section 7 describes the exten-
sion of the simulations including the complete first two
quark generations as active degrees of freedom. Sec-
tion 8 has further selected results and we conclude in
section 9, where we also give an outlook.
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Figure 1: In the graph, we show the light quark contribution to the
leading order hadronic contribution to the muon anomalous magnetic
moment. The set of open and filled symbols represent two different
lattice definitions of the muon anomalous magnetic moment, as will
be discussed in more detail in section 5.

2. Chiral invariant and chirally improved lattice
fermions

When K. Wilson proposed his formulation of QCD
on a Euclidean space-time lattice [13], he had to com-
promise between the appearance of unwanted doubler
modes and a breaking of chiral symmetry on a lattice
since both properties cannot be maintained at the same
time. In particular, Wilson’s lattice Dirac operator reads

D̂Wilson(mq) =
1
2

(
γµ(∇∗µ + ∇µ) − r∇∗µ∇µ

)
+ mq, (1)

where ∇µ (∇∗µ) denotes the forward (backward) lat-
tice derivative, mq is the bare quark mass and r the Wil-
son parameter. The second order derivative term r∇∗µ∇µ
lifts –on the one hand– the doubler modes which re-
ceive a mass proportional to r/a such that in the limit
of vanishing lattice spacing a they become infinitely
heavy and decouple. On the other hand, since this
term acts like a mass term, chiral symmetry is explic-
itly broken even for mass-less quarks at mq = 0. Chiral
symmetry is the invariance of the action S latt under the
interchange of mass-less left-handed and right-handed
quarks which can be mathematically expressed by the
anti-commutation relation {γ5,Dlatt} = 0.

The clash between a lattice formulation of the quark
and gluon interaction and chiral symmetry has then been
formalized in the infamous Nielsen-Ninomiya theorem
[14, 15, 16]. It states that a theory that shows point-
like localization, has the property of chiral symmetry,
describes only one quark species and converges to the
correct continuum quark propagator cannot be consis-
tently formulated on a space-time lattice.

Although in a seminal work [17] it could be demon-
strated that to all orders of perturbation theory chiral
symmetry in Wilson’s formulation of lattice gauge the-
ory will be recovered in the continuum limit, the search
for an exactly chirally invariant lattice formulation had
been actively pursued in the lattice community. One
reason has been that the breaking of chiral symmetry
leads to unwanted effects such as the necessity of addi-
tive mass renormalization or the apparent impossibility
to formulate a chiral gauge theory on the lattice.

A solution to this problem was provided by the
Ginsparg-Wilson relation [18],

γ5Dlatt + Dlattγ5 = aDlattγ5Dlatt (2)

which states that the anti-commutation relation of the
Dirac operator and γ5 is not zero as in the continuum
but allows for a right hand side which is, however, mul-
tiplied with the lattice spacing. In this way, at vanishing
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lattice spacing the continuum chiral symmetry relation
is restored.

The full power of the Ginsparg-Wilson relation
showed up, when it was realized [8] that any lattice
Dirac-operator which fulfills this relation implies an ex-
act lattice chiral symmetry

Ψ→ γ5

(
1 −

a
2

Dlatt

)
Ψ , Ψ̄→ Ψ̄

(
1 −

a
2

Dlattγ5

)
.(3)

Consequences from this observation are far reaching
[19]: the index theorem can be established on the lat-
tice, many renormalizations become trivial or mixing
patterns in the renormalization can be avoided. The
Ginsparg-Wilson (GW) relation laid therefore a solid
theoretical ground for a chiral invariant lattice theory
of quantum chromodynamics. At the time the GW re-
lation was derived, no practical solution could be found
that could be used in numerical simulations. It is re-
markable that only 17 years later the importance of the
GW relation was rediscovered [20] and candidate lattice
Dirac operators were proposed [21]. A concrete realiza-
tion for an operator that satisfies the GW relation has
been suggested in [6, 7] in form of the so-called overlap
operator,

D̂overlap(0) =
1
a

(
1 − A(A†A)−1/2

)
. (4)

The kernel operator A reads:

A = 1 + s − aD̂Wilson(0), (5)

where DWilson is the Wilson-Dirac operator of eq. (1),
s is a parameter which satisfies |s| < 1. This overlap
operator could be shown to be local [22] in the sense
that it is exponentially bounded and the parameter s can
be used to optimize the locality properties of D̂overlap(0).
A quark mass can be added to the overlap operator in a
rather straightforward way,

D̂overlap(mov) =

(
1 + s −

amov

2

)
D̂overlap(0)+mov,(6)

where mov is the bare overlap quark mass.
The above sketched overlap operator has been in the

focus of the first period of this project. An important
goal has been to find efficient ways to evaluate D̂overlap
numerically. In [9, 10] a very comprehensive test of
various algorithmic methods has been performed which
allowed to identify the optimal way to carry out compu-
tations with the overlap operator. It needs to be stressed,
though, that all numerical computations with the over-
lap operator have been performed in the quenched ap-
proximation where the fermion determinant is set to
one. Thus, internal sea quark loops have been neglected.

In this quenched approximation, it became possible
to employ the overlap operator for calculations in the ε-
regime of chiral perturbation theory [23, 24, 25] to an-
alyze the low-lying eigenvalue spectrum [26] and var-
ious meson correlation functions [27]. As a result, a
number of low energy constants of chiral perturbation
theory could be determined. We show in fig. 2, as an
example the comparison of the cumulative eigenvalue
distribution as computed numerically using the overlap
operator and the analytical prediction from random ma-
trix theory [28, 29, 30, 31]. From this comparison a
value of the chiral condensate of Σ ≈ (253MeV)3 could
be extracted which is in a good agreement with other
determinations performed at that time in the quenched
approximation.
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Figure 2: The cumulative distribution of the lowest non-zero eigen-
value on a 104 lattice for a lattice spacing of a ≈ 0.1fm. We show
the random matrix theory (RMT) predictions (lines) and results for
topological charges |ν| = 0, 1, 2. We find a satisfactory agreement
with RMT, if the chiral condensate is chosen optimally. This requires
Σ ≈ (253MeV)3.

For the quenched investigation of the ε-regime, small
volumes such as 16332 are often sufficient for which the
overlap operator can be evaluated with an acceptable
computational cost. However, when larger volumes are
needed, it turned out that the cost for using the overlap
operator exceeds a factor of hundred when compared
to Wilson like fermions, [9, 10]. Moreover, employing
the overlap operator for dynamical fermions, also a con-
ceptual problem appears since the overlap operator has
exact, topological zero modes [32]. This led to a gen-
eral skepticism in the lattice community that dynamical
overlap simulations will become practical for large vol-
umes, a skepticism that in fact turned out to be true.

Note, however, that through a number of special al-
gorithmic tricks [33] the overlap operator has been used
very successfully for analyzing a Higgs-Yukawa model
on the lattice [34]. In these works, the phase structure
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of the model [35, 36], lower and upper Higgs boson
mass bounds [37, 38], Higgs boson resonance parame-
ters [39] and the influence of heavier quarks [40, 41] and
higher dimensional operators [42] have been worked
out.

3. Twisted mass fermions

The very large computational cost of overlap
fermions made it necessary to look for alternative for-
mulations of lattice QCD which should owe the prop-
erties outlined in the introduction. In ref. [11] a pro-
posal for lattice fermions appeared in form of twisted
mass fermions which could later be shown to lead to an
automatic O(a)-improvement [12], as will be discussed
below.

Twisted mass fermions are a variant of Wilson
fermions with a (2-flavour) Dirac operator of the form

D̂TM = D̂Wilson(mq) + iµqγ5τ3, (7)

where µq is an additional mass parameter, called the
twisted mass and τ3 is the third Pauli matrix acting in
flavour space.

This twisted mass formulation of lattice QCD
promised to realize an automatic O(a) improvement
such that all physical quantities scale with a rate of
O(a2) towards the continuum limit. What made this
approach very attractive is that the automatic O(a)-
improvement [12] is based on symmetry arguments
alone, thus providing a clean and solid theoretical
ground. It goes beyond the scope of this article to
provide the arguments that lead to automatic O(a)-
improvement and we refer to ref. [43] for a review on the
subject. Twisted mass fermions also lead to a regular-
ization of small, unphysical eigenvalues that appear in
other Wilson-type formulations of lattice QCD, a prop-
erty that makes twisted mass fermions very attractive for
numerical simulations, and the maximally twisted mass
setup simplifies certain renormalization procedures.

The paper [12] has been a turning point of this work.
We decided to test this promising approach to lattice
QCD, first in the quenched approximation. In particu-
lar, in ref. [44] we could demonstrate that twisted mass
fermions at maximal twist indeed allows to reach very
small pion masses, much below what has been possible
with standard or improved Wilson fermions. In a de-
tailed lattice spacing scaling test [45, 46, 47] it became
also possible to demonstrate the anticipated automatic
O(a) improvement of maximally twisted mass fermions,
see fig. 3.

In the course of this scaling test, an optimal way for
tuning to maximal twist could be established. While in

our first attempt we aimed at setting the pion mass to
zero, it turns out that a much better way is to tune the
bare Wilson quark mass mq such that the PCAC quark
mass,

mPCAC =

∑
x〈∂0Aa

0(x)Pa(0)〉
2
∑

x〈Pa(x)Pa(0)〉
, a = 1, 2 (8)

vanishes. This corresponds to tuning the theory to a crit-
ical value of the quark mass, mq,crit or to a critical value
of the hopping parameter κ, κcrit = 1/(8+2amq,crit). Note
that the PCAC quark mass is optimally evaluated at
large enough time separation, such that the pion ground
state is dominant.

Employing this definition of maximal twist not only
the nice scaling behaviour in the square of the lattice
spacing as shown in fig. 3 could be established, but it
could also be demonstrated that the remaining O(a2) ef-
fects are small. We anticipate already here that this very
good lattice scaling behaviour was also found in a later
stage of this work when the quenched approximation
could be overcome and the quarks acted as truly active
degrees of freedom in the simulations [48, 49, 50, 51].
These findings are in full agreement with the theoretical
analysis performed in ref. [52] which also suggests to
tune the PCAC quark to zero to realize maximal twist in
an optimal way.
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Figure 3: The continuum limit scaling behaviour of the pion decay
constant. We show results for maximally twisted mass fermions for
two definitions to realize maximal twist.

The major drawback of twisted mass fermions is the
fact that they break isospin explicitly resulting in dif-
ferent masses for, e.g. the charged and the neutral pi-
ons. This flavour breaking effect has been analyzed in
ref. [53] and at least in the quenched approximation a
tolerably small flavour breaking effect has been found.
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Although the isospin violation is only an O(a2) lat-
tice artefacts, it can have severe consequences. It in-
fluences the phase structure of lattice QCD which can
lead to instabilities in the numerical simulations, see be-
low. It also gives rise to additional finite size effects as
predicted from chiral perturbation theory [54, 55, 56].
The breaking of isospin has been thoroughly investi-
gated theoretically [57]. The conclusion of this paper
has been that only quantities are affected that are related
to the neutral pion mass. Nevertheless, this particular
lattice artefact needed to and has been monitored in the
course of the work employing twisted mass fermions.

3.1. First simulations with active up and down quarks
The success of the quenched computations described

above made the twisted mass approach to be a very
promising candidate for dynamical lattice QCD simu-
lations. Moreover, as the twisted mass term provides
an explicit infra-red regulator for the fermion matrix
and avoids thus unwanted unphysical small eigenvalues
of the Wilson-Dirac operator, employing twisted mass
fermions leads to safe simulations. This fact has been
–at least in the beginning– a major motivation for us-
ing twisted mass fermions [58]. It was then found later
that the effect of the fermion determinant itself can also
help substantially to suppress these small eigenvalues
[59, 60].

Staying within the setup of twisted mass fermions,
first dynamical simulations of twisted mass fermions
were started. It is worth emphasizing that we developed
different programme codes [61, 61, 62], including even
codes for the APE-machines [63]. Since these codes
also used different realizations of the standard simula-
tion algorithms, we could therefore cross-check all our
numerically obtained results in an independent way.

When starting these first twisted mass numerical sim-
ulations, we experienced a surprise. In contrast to
our expectation that the simulations should be safe, we
found that they are in fact unstable manifesting itself
by the appearance of a metastable behaviour [64, 65,
66, 67]. This effect could be demonstrated performing
simulations with cold (completely ordered) or hot (com-
pletely random) gluon field configurations [64]. The
two simulations led to different plaquette values as can
be seen in fig. 4.

The behaviour of the simulations could be understood
from the results of ref. [68]. In this paper, an analysis
of the effective potential within the framework of chiral
pertubation theory has been performed for twisted mass
fermions. Depending on the parameter values of the ac-
tion, the bare Wilson and the bare twisted mass param-
eter, two different scenarios were found in this analysis.
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Figure 4: Metastable states. The number of sweeps is given in thou-
sands. The lattice size is 123 × 24 and the twisted mass is µq = 0.01.

The first situation leads to a single minimum of the ef-
fective potential while the second situation to a double
well effective potential.

These two shapes of the effective potential lead to dif-
ferent phenomena: the first case (single minimum) cor-
responds to a second order behavior –we speak of an
Aoki scenario [69]– while the second case belongs to a
first order behaviour –which is referred to as the Sharpe-
Singleton scenario. The suspicion that the behaviour of
the simulations originates from being in the first order
scenario made it necessary to investigate the situation in
more detail. To this end, we performed thermal cycles,
see fig. 5 and also ref. [66].

It is only possible to establish from numerical sim-
ulations the existence of a first order phase transition
through a detailed and demanding finite size analy-
sis. Such an analysis is very difficult when quarks are
taken as active degrees of freedom in the simulations.
However, we found through investigations as described
above, very strong evidence that we are indeed in the
Sharpe-Singleton scenario. In addition, a number of an-
alytical work was carried out [70, 71, 72, 73, 74, 75, 76,
55] and a full consistency with our numerical simula-
tion results has been found. For an analysis of the Aoki
scenario, see ref. [77].

The difficulty with the first order phase transition of
the Sharpe-Singleton scenario is that it becomes very
difficult, if not impossible, to go to small quark masses
since the simulations there the simulations become un-
stable with not very well defined results due to the first
order scenario. Note that this effect is a pure lattice arte-
fact which vanishes towards the continuum limit.

It became therefore necessary to find a lattice action



K. Jansen / Nuclear Physics B Proceedings Supplement 00 (2015) 1–25 6

that avoids the first order behaviour as much as pos-
sible to allow for simulations at small quark masses.
We carried out therefore a test of various actions [65,
78, 64, 66, 67] with the conclusion that employing an
improved gauge action, the tree-level Symanzik action
[79, 80], is sufficient to weaken the first order behaviour
enough such that safe simulations at pion masses of
about 300MeV become possible.

The setup of using the Symanzik improved gauge ac-
tion and maximally twisted mass fermions for 2 flavours
of mass-degenerate quarks has been the starting point
for first calculations with active up and down quarks
[58]. In this work, we could in fact reach pion masses
of about 300MeV which at the time of the publication
has been a major achievement.
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Figure 5: The plaquette expectation value 〈P〉 as a function of 1/(2κ)
at three values of the lattice spacing (corresponding to the three values
of β in the graph) we have simulated. We also indicate the values of
aµwhich are scaled with β such that r0µ is roughly constant. The lines
just connect the data points and only serve to guide the eye.

In the benchmark paper [58] we only used a single
value of the lattice spacing, a single volume and only
varied the quark mass. Also, we only looked at simple
meson observables such as the pion mass and the pion
decay constant which we compared to chiral perturba-
tion theory predictions, see fig. 6 for the example of the
pseudo scalar decay constant.

The fact that 300MeV pion masses could be reached
and that by tuning only one parameter to reach maxi-
mal twist and hence automatic O(a)-improved of phys-
ical quantities, triggered a number of groups in Europe
to join our effort of performing calculations with max-
imally twisted mass fermions. This eventually ended
in the formation of the European Twisted Mass Col-
laboration (ETMC) which led to a very successful col-
laboration in the following years. It established a very
broad research programme by addressing many interest-
ing physical observables. One very important spin-off

of this activity has been the calculation of quantities that
are important for exploring hadron structure as focused
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Figure 6: The graph shows a fPS as a function of bare twisted quark
mass µq together with fits to χPT formula, see [58]. The figure shows
a fit applied to the raw data on the L = 24 lattice at the 4 lowest values
of µq. The finite size corrected result is represented by the dashed
curve.

on in the work of ref. [5]. Another important spin-off

has been the calculations at a non-zero temperature [81]
which has been performed in this project. Both activ-
ities, the analysis of hadron structure and the twisted
mass lattice QCD at non-zero temperature have sig-
nificantly profited from simulations carried out in this
work.

3.2. Algorithm and software development
It is important to emphasize that the success of this

project relied to a large extend on the development of
new algorithms and an efficient implementation of these
algorithms on various computer platforms.

A major breakthrough has been the development of a
Hybrid Monte Carlo algorithm [82] with mass precondi-
tioning [83, 84] and multiple time step integrators with
a corresponding distribution of different parts of the ac-
tion on different time steps [62].

In fig. 7 we show the improvement that we could
achieve. The solid line represents the cost scaling of
previous implementations of the HMC algorithm as a
function of the ratio of the pion to the ρ-meson mass.
The curve is based on the formula given in ref. [85]

C = K
(

mPS

mV

)−zπ

LzL a−za , (9)

where the constant K can be found in ref. [85] and
zπ = 6, zL = 5 and za = 7. The result of this com-
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Figure 7: Computer resources needed to generate 1000 independent
configurations of size 243 × 40 at a lattice spacing of about 0.08 fm
in units of Tflops · years as a function of mPS/mV. We compare to the
formula for the computational cost of eq. (9) [85] (solid line) by ex-
trapolating our data with (mPS/mV)−4 (dashed) and with (mPS/mV)−6

(dotted), respectively. The arrow indicates the physical pion to rho
meson mass ratio. Additionally, we add points from staggered simu-
lations as were used for the corresponding plot in ref. [86]. Note that
all the cost data were scaled to match a lattice time extend of T = 40.

parison is plotted in figure 7. The data points show the
improvement of our new algorithm. The software of our
algorithm, called tmLQCD, is documented in [87] and
can be freely downloaded [88].

It is worth mentioning that at the same time we found
our algorithmic improvement, also other groups found
similar reductions of the algorithmic cost through alter-
native ideas [89, 90, 91]. This led to a general change
in lattice QCD simulations and enabled simulations on
large lattice sizes and small quark masses that were un-
thinkable before. Most advanced algorithmic improve-
ments nowadays even lead to an almost flat scaling be-
haviour of the computational cost as a function of the
pion mass, see [92].

Besides improving the algorithm itself, it is also nec-
essary to implement the algorithm in an efficient way on
super computers. In [93, 94] a description of the imple-
mentation of the tmLQCD software package is given,
employing multi-threading and openMP, usage of in-
strinsics and tuning to an optimal mapping of the 4-
dimensional lattice to the node network of the computer.
In fig. 8 we show one example of the gain that can be
achieved of carefully exploring and using the utilities

available on a supercomputer.
As mentioned before, tmLQCD includes optimisa-

tions for several modern supercomputer architectures,
IBMs Blue Gene/Q, Intels SSE instruction set and the
Aurora architecture. We also have an inverter and parts
of the HMC implemented for NVIDIA GPUs.
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Figure 8: Single BG/Q node double precision performance of the
hopping matrix in Gflop/s as a function of Llocal. “Plain C” and “QPX”
correspond to measurements with communication switched off using
a plain C implementation and one including QPX instructions, respec-
tively. The other points include communication, see also refs. [93, 94].

4. Simulations with N f = 2 flavours of mass-
degenerate quarks

Equipped with the improved HMC algorithm and an
efficient implementation of the tmLQCD software suite,
the ETMC performed simulations for N f = 2 flavours
of mass-degenerate light quarks for different values of
the lattice spacing, lattice volumes and quark masses
[58, 95, 48]. In this way, systematic effects from dis-
retization and finite volume errors could be determined
allowing thus for controlled results with a determination
of systematic errors in a quantitative way.

As a first step, an analysis for the pion mass and the
pion decay constant as a function of the quark mass has
been performed by confronting these data to analytical
expressions of chiral perturbation theory.

The formulae describing the chiral and continuum be-
haviour of fPS, mPS in infinite volume and leading O(a2)
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lattice spacing effects read [96, 97, 98]:

(rχ0 mPS)2 = (rχ0 )2 χµ

[
1 + ξ log

 χµ
Λ2

3


+ DmPS (a/rχ0 )2 + T NNLO

m

]
, (10)

rχ0 fPS = rχ0 f0

[
1 − 2ξ log

 χµ
Λ2

4


+ D fPS (a/rχ0 )2 + T NNLO

f

]
, (11)

where T NNLO
m, f denote the continuum NNLO χPT terms

T NNLO
m =

17
2
ξ2

log
χµ

Λ2
M

2

+ 4ξ2kM , (12)

T NNLO
f = −5ξ2

log
χµ

Λ2
F

2

+ 4ξ2kF , (13)

with

log
Λ2

M

χµ
=

1
51

28 log
Λ2

1

χµ
+ 32 log

Λ2
2

χµ

− 9 log
Λ2

3

χµ
+ 49

 , (14)

log
Λ2

F

χµ
=

1
30

14 log
Λ2

1

χµ
+ 16 log

Λ2
2

χµ

+ 6 log
Λ2

3

χµ
− 6 log

Λ2
4

χµ
+ 23

 , (15)

and we have defined

ξ ≡ χµ/(4π f0)2, χµ ≡ 2B0µR, (16)

and

µR ≡ µq/ZMS
P (µ = 2 GeV) . (17)

We use a normalisation such that f0 =
√

2F0, i.e. fπ =

130.7 MeV. For the finite size corrections we have used
the formulae of refs. [99, 100].

An example for a chiral fit using the above formu-
lae is shown in fig. 9. By performing a large variation
of such fits, excluding certain data sets, using different
orders of chiral perturbation theory or different kind of
finite size corrections, the distribution for the fit parame-
ters has been built. From the median of this distribution
we determine the value of the fit parameter and from the
width the systematic error. Our results can be found in
table 2. As can be seen, the chiral fits allowed to deter-
mine a set of low energy constants with good statistical
precision and a quantitative determination of systematic
errors.

median statistical systematic

mu,d [MeV] 3.54 (19) (+16 − 17)
¯̀3 3.50 (9) (+9 − 30)
¯̀4 4.66 (4) (+4 − 33)
f0 [MeV] 121.5 (0.1) (+1.1 − 0.1)
B0 [MeV] 2638 (149) (±132)
|Σ|1/3 [MeV] 270 (5) (+3 − 4)
fπ/ f0 1.0755 (6) (+8 − 94)
ZP(β = 3.90) 0.434 (8) (+4 − 2)
ZP(β = 4.05) 0.452 (9) (+3 − 9)

Table 2: Summary of fit results. The first error is of statistical origin
while the second, the asymmetric one, accounts for the systematic
uncertainties. B0, Σ and mu,d are renormalised in the MS scheme at
the renormalisation scale µ = 2 GeV, as the values of ZP are in the MS
scheme at scale 2 GeV. The scale is set by fπ = 130.7 MeV as done in
ref. [58]. For a comparison to other recent lattice results we refer the
reader to ref. [101].

5. Highlight results for N f = 2 flavours

The set of gluon field configurations generated by
ETMC for N f = 2 flavours of mass-degenerate quarks
at various values the lattice spacing, volume and quark
masses served as a basis for the computation of many
other physical quantities. In this section we will high-
light those calculations that have been in the focus of the
twisted mass research project within this transregional
collaborative research center. In particular, we will dis-
cuss in this section the leading order hadronic contribu-
tions to the lepton anomalous magnetic moments, the
pion scattering length and the ρ-meson resonance. Re-
sults concerning the investigation of the structure of
hadrons and baryon masses will be addressed in a sepa-
rate contribution [5].

5.1. Muon anomalous magnetic moment

The anomalous magnetic moment of the muon, aµ,
is considered to be an important benchmark quantity to
test the standard model of particle interactions. Alter-
natively aµ can be seen as a prime candidate observ-
able to detect new physics beyond the standard model.
The anomalous magnetic moment of the muon can be
measured experimentally very precisely [102, 103]. It
can also be computed precisely in the standard model,
see e.g. the review [104]. Comparing experimental re-
sults and standard model calculations for aµ reveals a
discrepancy of about three σ which is persistent over
many years now. The open question is, whether this
discrepancy originates from some undetected effect in
the experimental or theoretical determination of aµ, or,
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β = 4.05, L = 24 data
β = 4.05, L = 32 data
β = 3.90, L = 32 data
β = 3.90, L = 24 data

β = 4.05 fit
β = 3.90 fit

continuum fit

CL = 0.30

χ2/dof = 19/17
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Figure 9: We show one example of a chiral fit for rχ0 fPS as a function
of rχ0µR. Circles (triangles) represent data points from a lattice spacing
of about a = 0.09fm (a = 0.075fm). The value of χ2/dof obtained for
this fit is 19/17. Note that in these figures we did not propagate the
errors of rχ0 and ZP. When these errors are included the statistical
significance of a2-dependence of the data in the figures decreases.

somewhat more excitingly, whether it points to physics
beyond the standard model.

The leading order hadronic vacuum polarisation con-
tribution, ahvp

µ , is a key ingredient in the calculation of
aµ. Presently, it also constitutes the largest source of
uncertainty of the theoretical computation of aµ. Since
ahvp
µ is of intrinsically non-perturbative nature, evidently

a lattice QCD computation for this quantity is highly de-
sirable.

The anomalous magnetic moment al of a lepton l can
be written as a perturbative expansion in the electromag-
netic coupling α. The leading order in α appears at order
α2 and can be written as [105]

ahvp
l = α2

∫ ∞

0
dQ2 1

Q2 w(Q2/m2
l ) ΠR(Q2) . (18)

Here ml denotes the mass of the lepton, Q is the Eu-
clidean momentum and w(Q2/m2

l ) is a weight function,
which is known. The combination ΠR(Q2) = Π(Q2) −
Π(0) is the renormalized hadronic vacuum polarization
function Π(Q2). Finally, the vacuum polarization func-
tion is given by

Πµν(Q) =

∫
d4X eiQ·X〈Ω|T Jµ(X)Jν(0)|Ω〉 (19)

and Jµ =
∑

f Q f q fγµq f is the hadronic contribution to
the electromagnetic current.

In practise, the above given definition of the vacuum
polarization function is used at various values of the
squared momenta Q2. The data in momentum space

are then parametrized by an ansatz using vector meson
dominance and a polynomial,

Πlow(Q2) =

M∑
i=1

f 2
i

m2
i + Q2

+

N−1∑
j=0

a j(Q2) j , (20)

see ref. [106, 107]. For the case of an active strange
and charm quark, as discussed below, we also employ
Padé approximations [108]. The value of ahvp

µ is then
obtained at a fixed pion mass by integrating the func-
tion of eq. (20). Varying the number of terms in the fit
ansatz, provides a measure of the size of the systematic
errors in this procedure.

Following this strategy, the low lying set of data in
fig. 10 are obtained. As can be seen, they are signif-
icantly and consistently below the experimental value.
For these data, a phenomenological model has been de-
veloped [106] which allowed an extrapolation to the
physical pion mass. However, this extrapolation has
been afflicted with a substantial error for ahvp

µ , about ten
times bigger than the standard model error from a dis-
persive analysis.
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m
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2
   [GeV

2
]
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a µhv
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]

a=0.079 fm  L=1.6 fm
a=0.079 fm  L=1.9 fm
a=0.079 fm  L=2.5 fm
a=0.063 fm  L=1.5 fm
a=0.063 fm  L=2.0 fm

Figure 10: Comparison of the different methods described in the text
to evaluate ahvp

µ . The upper set of points are the results for ahvp
µ

using
H = mV , the middle set use H = fV , and the lower set correspond to
the standard method, formally H = 1. The two lines are linear extrap-
olations of ahvp

µ
and the curve is the phenomenological extrapolation

of ahvp
µ . The three methods agree at the physical point, denoted by the

dashed line, and agree with the estimated two-flavor contribution to
the experimental value.

The situation changed when it was realized in
ref. [106] that a different definition of ahvp

l can be used
at unphysical values of the pion mass. The only condi-
tion for such an alternative definition must be that the
standard definition is recovered at the physical value of
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the pion mass. The definition that has been suggested in
[106] reads

ahvp
l

= α2
∫ ∞

0
dQ2 1

Q2 w

Q2H2
phys

m2
l H2

 ΠR(Q2) (21)

where H is a hadronic quantity, evaluated at the (un-
physical) pion mass used in the simulation. Hphys corre-
sponds then to its physical value. The natural choice for
our calculation is the vector meson mass, i.e. H = mV .
By construction we have then that H(mPS → mπ) =

Hphys. The standard method can be reproduced by the
choice H = 1, but choosing a dimensionful scale has
the additional advantage that the explicit dependence on
the lattice spacing is eliminated. At the same time, the
renormalization condition that defines the physical limit
is now given by the dimensionless ratio ml/Hphys rather
than ml alone.

One reason why this modified method to compute
ahvp

l
is supposed to work is the relation al,V ≈ g2

Vm2
l /m

2
ρ.

Clearly, choosing H = mV takes out the pion mass de-
pendence of the vector meson mass [109] and should
lead to a much milder pion mass dependence of ahvp

l
.

This is indeed seen in fig. 10. The data are moving much
closer to the phenomenological value even at large pion
masses. In addition, the pion mass dependence is very
flat and perfectly consistent with a linear behaviour in
the pion mass which allows for a controlled extrapola-
tion to the physical pion mass and a correspondingly
much smaller error.

This procedure has been carried through for the lead-
ing order contribution of all lepton anomalous magnetic
moments and the following results are found,

ahvp
e,N f =2 = 1.513 (43) · 10−12 ,

ahvp
µ,N f =2 = 5.72 (16) · 10−8 ,

ahvp
τ,N f =2 = 2.650 (54) · 10−6 . (22)

The significantly reduced errors for the ahvp
l

in
eqns. (22) constitute a breakthrough in lattice QCD for
ahvp

l
and the work of ref. [106] has been provided with

the first Ken Wilson lattice award. In ref. [110] it was
demonstrated that the strategy developed in [106] can
be used for many other hadronic contributions of elec-
troweak observables and much work is in progress to
obtain results for these quantities.

5.2. I = 2 pion scattering length and ρ-meson reso-
nance

As another usage of the generated configurations we
calculated the s-wave pion-pion scattering length in the

isospin I = 2 channel in lattice QCD for pion masses
ranging from 270 MeV to 480 MeV. This calculation
is based on the finite volume method of refs. [111, 112,
113]. It relates the energy of a (ππ) state to the I = 2
elastic scattering length in infinite volume,

EI=2
ππ − 2mπ = −

4πaI=2
ππ

mπL3

1 + c1
aI=2
ππ

L
+ c2

(
aI=2
ππ

L

)2
+ O(L−6) (23)

where c1 = −2.837297 and c2 = 6.375183 are numeri-
cal constants.

The energy of the two pion state can be extracted
from the exponential decay of a suitable ππ correlation
function, see ref. [114]. Of course, the so obtained ener-
gies are obtained at unphysical values of the pion mass
and need to be extrapolated to the physical pion mass.
To this end, we have employed next to leading order
continuum chiral perturbation theory [115],

mπaI=2
ππ = −

m2
π

8π f 2
π,chi

1 +
m2
π

16π2 f 2
π,chi

[
3 ln

(
m2
π

µ2

)
− 1 − lI=2

ππ (µ)
]}

(24)

where lI=2
ππ (µ) is related to the Gasser-Leutwyler coeffi-

cients l̄(µ) as

lI=2
ππ =

4
3

l̄1 +
8
3

l̄2 −
1
2

l̄3 − 2l̄4 . (25)

Using these formulae, we have performed a chiral ex-
trapolation of our results and in fig. 11 we show the
good quality of this chiral extrapolation.

Most of our results have been obtained at a lattice
spacing of 0.086 fm. Additionally, we have checked
for lattice artifacts with one calculation at a finer lattice
spacing of 0.067 fm with the result that lattice spacing
effects are small. At the physical pion mass, we find
for the scattering length mπaI=2

ππ = −0.04367 (28)(36)
and for the corresponding low energy constant lI=2

ππ =

4.65 (.85)(1.07) at a scale of µ = fπ,phys. The first error
is statistical and the second is our estimate of systematic
effects.

The successful calculation of the I = 2 scattering am-
plitude motivated to perform a pilot study [109] to also
extract the ρ resonance parameters in lattice QCD. To
this end, we performed a non-perturbative lattice calcu-
lation of the P-wave pion-pion scattering phase in the
ρ-meson decay channel using two flavors of maximally
twisted mass fermions at pion masses ranging from 480
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Figure 11: Chiral extrapolation for the I=2 pion-pion scattering
length. The results in this work are shown together with the lattice
calculations of NPLQCD [116, 117] and CP-PACS [118] and the ex-
perimental analysis from refs. [119].

MeV to 290 MeV. Making use of the finite size method
developed in ref. [111, 112, 113], we have evaluated the
pion-pion scattering phase in the center-of-mass frame
and two moving frames.

In order to describe the energy dependence of the
scattering phase we use the effective range formula

tan δ1 =
g2
ρππ

6π
p3

ECM(m2
ρ − E2

CM)
(26)

p =

√
E2

CM/4 − m2
π (27)

with ECM the center of mass energy. The scattering
phase and a fit to eq. (26) is shown in fig. 12. As can
be seen, the energy range we are using covers the reso-
nance region and the effective range formula of eq. (26)
describes the data rather well. From the fit, we can
then read off the ρ-meson resonance mass and its de-
cay width. After performing a chiral extrapolation us-
ing the z-expansion [120, 121], we find a ρ-meson mass
mρ,phys = 0.850(35) GeV and Γρ,phys = 0.166(49) GeV.
Clearly the accuracy of these numbers cannot yet match
the experimental one. However, it needs to be stressed
that this work to determine resonance parameters was
one of the first of its kind and demonstrated that reso-
nance parameters can be extracted from lattice calcula-
tions. The idea of using several moving frames as pio-
neered in our work has then been utilized in more recent
publications and much more precise results at the one
percent level could be obtained, see e.g. ref. [122] and
the review in ref. [123]

0.3 0.35 0.4 0.45 0.5 0.55 0.6
aE

CM

0

0.5

1

si
n

2
(δ

)

CMF
MF1
MF2

sin
2
(δ)=1=>aM

R

Figure 12: We show one example of the scattering phases calculated
in the center of mass frame (CMF) and two moving frames (MF1 and
MF2) together with the fits to the effective range formula eq. (26).
At the position where the scattering phase passes π/2, the resonance
mass mρ (denoted as aMR in the graph) is determined. Through the
fit, the coupling constant gρππ and decay width Γρ are also extracted.

6. Renormalization

Many observables that are computed in lattice QCD
need a renormalization which should be performed ide-
ally non-perturbatively. We therefore carried through
a dedicated programme for computing renormalization
constants of bilinear quark operators and also operators
appearing in matrix elements and form factors needed
for exploring hadron structure [124, 125, 126, 127].

In particular, we calculated the scale-independent
renormalization constants ZV , ZA and the ratio ZP/ZS

employing the RI-MOM approach [128] as well as
many other renormalization constants that were needed.
In the evaluation of these renormalization constants
leading discretization effects of O(g2a2), computed in
one-loop perturbation theory, are explicitly subtracted
from the RI-MOM estimates.

In fig. 13 we show the example of the renormalization
constant of the vector current, ZV as a function of the
lattice momentum. Ideally, ZV should show a constant
behaviour as function of a2 p2. However, as can be seen
from the graph, the raw data (empty circles in the graph)
deviate from being constant.

When the leading order cut-off effects in lattice per-
turbation theory O(g2a2) are subtracted, represented by
the filled symbols in fig. 13, we find that ZV is con-
stant as a function of a2 p2 allowing thus to read off the
renormalization constant. It needs to be mentioned that
the leading order lattice perturbation theory corrections
not always give such an improvement, but nevertheless
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computing the renormalization constants with and with-
out perturbative subtractions provides a valuable cross-
check of the final results.
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Figure 13: The renormalization constant ZV (1/a; a2 p2) at a lattice
spacing of a ≈ 0.09fm, evaluated at the reference scale µ0 = 1/a,
plotted against the initial renormalization scale a2 p2. Filled squares
(empty circles) are results obtained with (without) the subtraction of
theO(g2a2) discretization effects computed in perturbation theory, see
[129]. The solid lines are linear fits to the data.

The lattice results of the renormalization constants
obtained in the RI-MOM scheme need to be converted
to the MS scheme. In the case of scale µ dependent
renormalization constants, they also need to be be run
to a certain reference scale, with typically µ = 2GeV.
For both, the conversion and the evolution we have used
the highest available loop order that has been computed
[130, 131, 132].

Besides the RI-MOM scheme, which has been our
working horse to compute renormalization constants,
we also explored [133, 134] the Schrödinger functional
scheme [135, 136, 137] which has been generalized to
twisted mass fermions in ref. [138]. In addition, we per-
formed a calculation in the coordinate (X-space) renor-
malization scheme [139, 140]. Both of these approaches
have the advantage to lead to renormalization constants
in a gauge invariant way.

For the X-space method, we looked [140] at various
current-current correlation functions and tried to find a
window at small distances where safe contact to pertur-
bation theory could be made. This then in turn allowed
the computation of the corresponding renormalization
constants and we found a full agreement with results
from the RI-MOM scheme, having thus a completely
independent cross-check at hand.

For the Schrödinger functional scheme we could
demonstrate that this setup, in principle, can be used
for maximally twisted mass fermions without destroy-
ing the property of automatic O(a)-improvement [133,
134]. However, the Schödinger functional scheme was
then in the following not used in practice since this ap-

proach would have required a new set of simulations
with the corresponding rather involved analysis.

7. Activating the strange and the charm quark

The results so far discussed have been obtained with
N f = 2 flavours of mass-degenerate quarks. Encour-
aged by the results of these N f = 2 simulations, we
decided to move on to also include the strange and the
charm quark as active degrees of freedom in our com-
putations [141, 142, 143], see ref. [144] for a review of
this situation. The action for this N f = 2 + 1 + 1 setup
is given by [12, 145]

S h = a4
∑

x

{
χ̄h(x)

[
D[U] + mq,h

+ iµσγ5τ1 + µδτ3
]
χh(x)

}
, (28)

where mq,h is the untwisted bare quark mass for the
heavy doublet, µσ the bare twisted mass – the twist is
this time along the τ1 direction – and µδ the mass split-
ting along the τ3 direction.

One very important observation is that with the action
in eq. (28) automatic O(a)-improvement can be realized
by setting the bare Wilson quark mass mq,h to the same
value as the tuned bare Wilson quark mass in the light
sector. Clearly, this significantly eases the tuning of the
theory to obtain the desired O(a2) continuum limit scal-
ing behaviour.

The bare mass parameters µσ and µδ of the non-
degenerate heavy doublet are related to the physical
renormalised strange and charm quark masses via [146]

(ms)R = Z−1
P (µσ − ZP/ZS µδ) ,

(mc)R = Z−1
P (µσ + ZP/ZS µδ) , (29)

where ZP and ZS are the renormalisation constants of the
pseudo scalar and scalar quark densities, respectively,
computed in the mass-less standard Wilson theory.

It needs to be stressed that the determinant associated
with eq. (28) is still positive for all values of µσ and µδ
that are used in practical simulations. Thus, the addi-
tion of the strange and charm quarks works well within
the twisted mass setup and, in fact, adding a doublet of
quarks is very natural for twisted mass fermions.

In ref. [141] we have carried through the very first
simulations with active strange and charm quarks.
There we could demonstrate that computations in this
setup are feasible and that tuning the theory to maximal
twist can be achieved. In addition, a strategy has been
outlined to calculate a variety of meson masses and de-
cay constants. The technology of ref. [141] has been
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further developed in [142, 143] and a comprehensive
analysis of the the light meson and the heavy light me-
son sectors have been performed. See also ref. [144] for
a review of simulations with active up, down, strange
and charm quarks.

As a first step, we performed very similar chiral fits to
the obtained pseudo scalar decay constants and masses.
Having data at various lattice spacings and volumes,
quantitative estimates of the size of these systematic ef-
fects could be given. In table 3 we give a comparison of
the extracted low energy constants for both, the N f = 2
and the N f = 2 + 1 + 1 setups. The compatibility of
the values of the low energy constants given in the ta-
ble reveals that for the light meson sector the effects of
an active strange and charm quark are not visible within
the precision we could reach.

N f = 2 N f = 2 + 1 + 1
¯̀3 3.70(27) 3.50(31)
¯̀4 4.67(10) 4.66(33)
fπ/ f0 1.076(3) 1.076(9)
Σ[MeV] 299(40) 325(10)
〈r2〉NLO

s [fm2] 0.710(28) 0.715(77)

Table 3: A comparison of the values of low energy constants of the
chiral effective Lagrangian from N f = 2 and N f = 2 + 1 + 1 flavour
simulations of maximally twisted mass simulations.

The major drawback of the twisted mass setup in the
heavy quark sector is that there parity and flavour are
not good quantum numbers making it thus difficult to
extract, e.g., the Kaon and, in particular, the D-meson
masses. We have investigated three methods to deter-
mine mK and mD in Nf = 2 + 1 + 1 twisted mass lat-
tice QCD and have explored strategies to extract the de-
sired states. To this end we have developed three distinct
methods all of which exploit the exponential fall-off of
correlation matrices for suitably chosen heavy-light me-
son creation operators. Method 1 amounts to solving
a generalized eigenvalue problem, method 2 is equiva-
lent to fitting a linear superposition of exponentials and
method 3 transforms the correlators to the physical ba-
sis by means of the twist rotation. In table 4 we give a
comparison of the so extracted Kaon mass (mK) and the
D-meson mass (mD) for one gluon field ensemble.

Although in the work of ref. [143] we could demon-
strate that it is feasible to address the parity and isospin
breaking effects for twisted mass fermions in the heavy
quark sector, the calculations are nevertheless rather
difficult and cumbersome. We have therefore often
used a different action in the valence sector, so-called

Method 1 Method 2 Method 3
amK 0.2567(2) 0.25554(88) 0.25668(35)
amD 0.922(11) 0.901(21) 0.909(22)

Table 4: Comparison of the results for mK and mD obtained with the
three methods mentioned in the text and discussed in ref. [143].

Osterwalder-Seiler fermions [147]. The corresponding
Dirac operator is given by

DOS,± = mq ± iµγ5

+
1
2
γµ

[
∇µ + ∇∗µ

]
− a

1
2
∇∗µ∇µ (30)

and amounts to take only one (upper or lower flavour)
component of the twisted mass Dirac operator. In this
way the isospin violating effects are completely avoided
which substantially helps in the simulations. In addi-
tion, the bare quark mass mq in eq. (30) is again set to
the tuned quark mass in the light quark sector to keep
automatic O(a)-improvement. Clearly, in this way a
mixed action is used for analyzing the heavy quark sec-
tor. However, the twisted mass operator and the OS op-
erator are so closely related that only very small unitar-
ity violations are to be expected which has been con-
firmed in the calculations where OS fermions have been
employed.

Unfortunately, OS fermions cannot be used straight-
forwardly in a simulation since the corresponding de-
terminant is not necessarily positive, restricting its use
therefore as a tool to extract physics in the heavy quark
sector.

8. Selected results from twisted mass fermion simu-
lations

The set of maximally twisted mass fermions both, for
N f = 2 and N f = 2 + 1 + 1 flavours of quarks led to
a number of physical quantities that were computed on
the corresponding gluon field configurations. In the fol-
lowing, we will describe a few of the computations.

8.1. Baryon spectrum

A benchmark calculation in lattice QCD is the
octet and decuplet baryon mass spectrum. We per-
formed such calculations first with only N f = 2 mass-
degenerate quark flavours [51, 148]. Here we found a
nice agreement between the experimentally measured
octet spectrum and our lattice calculations.
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We also calculated the spectra with the first two quark
generations active in the simulations [149]. We show in
fig. 14 the outcome of this computation. As can be seen,
our lattice QCD results indeed reproduce the baryon
spectrum which nicely demonstrates that we control the
simulations in our setup. In [149] we have extended
these calculations also to the Charm spin-1/2 and the
Charm spin-3/2 baryon masses, finding again agreement
with the experimentally determined masses. However,
it is worth stressing that also predictions are provided
for the mass of the doubly charmed Ξ∗cc, as well as of
the doubly and triply charmed Ωs that have not yet been
determined experimentally.
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Figure 14: The octet and decuplet baryon masses obtained at the
physical point and the experimental masses [150] shown by the hori-
zontal bands. For most baryons the band is too small to be visible. For
the twisted mass results of this work (red circles) the chiral extrapola-
tion was performed using the leading order HBχPT. In our results, the
statistical error is shown in red, whereas the blue error bar includes
the statistical error and the systematic errors due to the chiral extrapo-
lation and due to the tuning added in quadrature. Results using clover
fermions from BMW [151] are shown in magenta squares and from
PACS-CS [152] with green triangles. Open symbols are used wher-
ever the mass was used as input to the calculations.

8.2. Chiral condensate

The chiral condensate Σ is the order parameter of
spontaneous chiral symmetry breaking in QCD which
is a fundamental and inherently non-perturbative phe-
nomenon. Having an a-priori test directly from QCD,
whether the chiral condensate is non-zero and determin-
ing its value quantitatively is therefore a prime target of
lattice QCD calculations.

In this work, we have explored several strategies to
determine the chiral condensate. The most natural way
has been already explained in previous paragraphs and
consists of performing fits to formulae from chiral per-
turbation theory to the pion decay constant and the pion
mass. In these fits the chiral condensate appears as one

of the low energy constants of the effective chiral La-
grangian, see eq. (11). In fig. 6 and fig. 9 we show the
quality of such fits and in table 3 we have provided the
values of B0 which is related to the chiral condensate
through the formula

Σ =
B0 f 2

0

2
(31)

where f0 is the pion decay constant in the chiral limit.
A completely alternative way is the exploitation of

the Banks-Casher relation which reads

Σ

π
= lim

λ→0
lim
m→0

lim
V→∞

ρ(λ,m) (32)

where ρ(λ,m) is the eigenvalue density,

ρ(λ,m) =
1
V

∞∑
k=1

〈δ(λ − λk)〉 . (33)

A conceptually clean way to make use of the Banks-
Casher relation [153], which at the same time will lead
to a practical procedure, is through the mode number,

ν(M,m) = V
∫ Λ

−Λ

dλρ(λ,m),

Λ =
√

M2 − m2 (34)

which is the number of eigenvalues below a certain
threshold parameter Λ. The parameter M is to some
extent arbitrary and will be chosen such that a linear
regime in the mode number as function of M can be es-
tablished, since the chiral condensate can be obtained
then from the slope of the mode number as function of
M [154],

Σ ∝ ∂/∂Mν(M,m) . (35)

Another important result is that the mode number is
a renormalization invariant, ν(m,M) = νren(mren,Mren
such that the renormalized chiral condensate can be ob-
tained directly [154].

The essential quantity entering the computation of the
chiral condensate is the spectral sum

σk(µ,mq) = 〈Tr
(
D†mDm + µ2

)−k
〉 (36)

which can be related to the mode number through

σk(µ,mq) =

∫ ∞

0
dMν(M,mq)

2kM(
M2 + µ2)k+1 (37)
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which in turn can be expressed to density chains

σ3(µ,mq) = a24
∑

x1,...,x6

〈P+
12(x1)P−23(x2) . . . P−61(x6)〉(38)

with the pseudo scalar currents

P±i j = ψ̄iγ5τ
±ψ j , (39)

where i, j denote different flavour doublets and τ± acts
on such a flavour doublet. The essential point for us-
ing the density chains of eq. (39) is that they lead
to a conceptually very clean definition of the chiral
condensate [154], and of the topological susceptibility
[155, 156, 157] discussed later, which is free of diver-
gencies. On the practical side, the mode number is com-
puted by stochastically calculating the number of eigen-
values below the threshold parameter M, see ref. [154].

In this work, we have computed the chiral conden-
sate [158] with the above sketched method using gluon
field configurations for N f = 2 and N f = 2 + 1 + 1
flavours of quarks in the maximally twisted mass setup.
For each ensemble of gluon field configurations we have
performed a detailed study to identify the linear regime
in M of the mode number. From the slope of this lin-
ear region we then have extracted the chiral condensate
through

ΣR =
π

2V

√
1 −

(
µR

MR

)2
∂

∂MR
νR(MR, µR) . (40)

Having obtained in this way the renormalized chiral
condensate at various quark masses, we perform fits for
a fixed value of the lattice spacing using the NLO order
of chiral perturbation theory,

Σ(m,M)
Σ

= 1 −
mΣ

16π2F4

{
3ln

ΛΣ

µ̄2F2

+ ln(1 + m2/Λ2)

+
m
Λ

atan
Λ

m
+

Λ

m
atan

m
Λ

+ const
}

(41)

to extrapolate to the chiral, mass-less limit.
In refs. [159, 160] it has been shown that the den-

sity chains, although afflicted by short distance contri-
butions, are O(a) improved such that we can perform a
continuum limit extrapolation quadratically in the lat-
tice spacing. The inlet in fig. 15 shows the contin-
uum limit extrapolation. The analysis for the case of
N f = 2 + 1 + 1 flavours have been repeated by us also
for only N f = 2 flavours of quarks using the same strat-
egy.
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Figure 15: Chiral and continuum extrapolations of the chiral conden-
sate for N f = 2 + 1 + 1 flavours of active quarks.

In table 5 we give a comparison of the chiral conden-
sate from various collaborations. To select the results,
we have demanded that the results were obtained after
a chiral and continuum extrapolation in order to achieve
a comparable situation. Note that the values for the chi-
ral condensate can differ significantly between different
collaborations. This problem can be traced back to orig-
inate manly from the problem of setting the physical
scale in lattice QCD calculations as discussed in [161].

group Σ1/3 MeV (MS (2GeV)) error
1 299.9 7
2 298.1 8.7
3 263 (3)(4)
4 256 6
5 278 6
6 281.5 7.9
7 272.3 1.8
8 269.9 6.5
9 299 39

10 283 2

Table 5: Legend: 1.This work N f = 2, 2.This work N f = 2 + 1 + 1, 3.
CLS [162], 4. RBC-UKQCD [163], 5. MILC [164], 6. MILC [165],
7. BMW [166], 8. ETMC [48], 9. ETMC [167], 10. HPQCD [168]

As mentioned above, there are still more methods to
compute the chiral condensate. One can use the quark
propagator itself on Landau gauge fixed configurations
and confront the momentum dependence with contin-
uum perturbation theory [169]. This allows for a test
of the applicability of perturbation theory and a stable
extraction of the chiral condensate which is moreover
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fully compatible with the other results in table 5 where
is appears as label 9.

Another possibility is the exploration of the so-called
ε-regime of chiral perturbation theory [170, 171]. Here,
one chooses the unphysical situation of the pion Comp-
ton wave length to be larger than the extent of the lattice.
The corresponding strong finite size effects can then
be described by an effective chiral Lagrangian which
is parametrized by the low energy constants of chiral
perturbation theory among which is the chiral conden-
sate. This approach has been tested first in the quenched
approximation [23] and has been employed for twisted
mass fermions in [172].

Finally, one can also look at the eigenvalue distribu-
tions of the low lying eigenvalues of the lattice Dirac
operator used [29]. These distributions are described
by random matrix theory, see ref. [173] for the general
case of Wilson fermions and ref. [174] for the special
case of twisted mass fermions. The distributions of the
low-lying eigenvalues have again the chiral condensate
as a free parameter which can be obtained through a fit
to the analytical predictions of random matrix theory.
This approach has been tested in the quenched approx-
imation for twisted mass fermions [26], see also [175]
for the case of clover improved Wilson fermions. Work
confronting random matrix theory predictions with nu-
merical results using twisted mass fermions with active
quarks is ongoing. It is worth mentioning that for the
just started computations at the physical point making
use of the low-lying eigenvalue spectrum is expected to
be a good strategy to compute the chiral condensate.

8.3. Topology susceptibility
In a similar way as discussed above for the chiral con-

densate, also the topological susceptibility can be ex-
pressed by density chains [156, 157] through

χtop = µ6 σ2;1 ≡
〈Q2〉

V
, (42)

where:

σ2;1(µ) = a20
∑

x1...x5

〈S +
41(x1) P−12(x2) P+

23(x3)

P−34(x4) S +
56(x5) P−65(0)〉 . (43)

Here we introduced the currents and S ±i j = χ̄iτ
±χ j and

P±i j = χ̄iτ
±γ5χ j, V is the volume and µ denotes the

twisted quark mass.
Again, the essential advantage of this definition is that

through eq. (42) a well defined, divergence free expres-
sion for the topological susceptibility can be obtained.
As described in refs. [157] the density chains can be

evaluated stochastically by the method of spectral pro-
jectors. We applied this method for maximally twisted
mass fermions [176, 159] and show in fig. 16 the ob-
tained values of the topological susceptibility as a func-
tion of the renormalized quark mass at various values of
the lattice spacing.

Fitting these data using a simple linear, leading or-
der chiral perturbation theory ansatz, χtop =

Σµl
N f

, we
find a value for the chiral condensate, in units of the
r0, r0Σ1/3 = 0.651(61). This result is in agreement with
the above discussed direct determination from the mode
number on the same set of gauge field ensembles, i.e.
r0Σ1/3 = 0.680(20)(21) [158], indicating that LOχPT
describes the quark mass dependence of the topologi-
cal susceptibility at least within the rather large errors
of our results. In [159] we could demonstrate that also
the topological susceptibility defined in eq.(42) is O(a)-
improved such that lattice spacing artefacts only appear
in O(a2).

It needs to be stressed, though, that the topological
susceptibility is affected by substantial statistical fluctu-
ations necessitating long Monte Carlo histories. With
typical parameter values of Lattice QCD simulations
nowadays, i.e. lattice spacings of 0.05 fm . a . 0.1 fm
and lengths of Monte Carlo runs of O(5000) trajectories
with auto correlation times τint = O(10) − −O(500) tra-
jectories, it is very difficult to obtain errors smaller than
10-15% for a given ensemble. It is important to note that
this is not a property of the method used here, but of the
gauge field configurations themselves and as such can
not be easily overcome, i.e. without running very long
simulations. Also, there is an additional problem with a
substantially increasing auto correlation time when ap-
proaching the continuum limit [177] which manifests it-
self in the topological charge as a very sensitive quantity
for detecting this very slow mode.

Figure 16: The quark mass dependence of the topological suscepti-
bility.
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8.4. Witten-Veneziano relation
The topological susceptibility is also a key ingredient

in the Witten Veneziano formula. It relates the masses
of the Kaon, η and η′ mesons to the topological sus-
ceptibility at infinite (quenched) quark masses, χ∞, and
reads

f 2
π

4N f

(
m2
η + m2

η′ − 2m2
K

)
= χ∞, (44)

where fπ is the pion decay constant.
The formula is obtained by taking the large colour,

Nc limit. In particular, in Ref. [178], the ’t Hooft limit
(Nc → ∞, while g2Nc and N f are kept fixed) is taken.
Alternatively, an expansion in u = N f /Nc around u =

0 can be used as done in ref. [179]. The formula can
also be obtained through the study of anomalous flavor-
singlet Ward-Takahashi identities in the limit u → 0
[180].

In ref. [181, 182, 183] the η and η′ meson masses have
been determined to a good accuracy. This is a highly
non-trivial achievement since the correlator, from which
the η′ mass is extracted, receives contributions from dis-
connected graphs. Employing special techniques, in
[181, 182] this difficulty could be partially avoided.

In order to obtain the quenched topological suscepti-
bility, χ∞, a dedicated computation has been performed.
Employing the technique of the spectral projectors, re-
sults for χ∞ could be obtained, such that a continuum
limit could be carried out, see fig. 17. It is important
to remark that all quenched simulations have been per-
formed in such a way that the physical situation, which
has been used to compute the meson masses, have been
matched, see [142].

r40χ∞ = 0.049(6)
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0

Figure 17: Continuum limit extrapolation of χ∞ as a function of
(a/r0)2 for the quenched ensembles used in this work.

In table 6 we give a comparison of the combination
of masses needed for the Witten-Veneziano formula and

the quenched topological susceptibility. In units of r0
we find a very nice agreement, showing that in lat-
tice units the formula indeed holds. Since in [182] it
has been demonstrated that at the physical value of the
pion mass also the meson masses entering the Witten-
Veneziano formula agree with their experimental coun-
terparts, we conclude that the Witten Veneziano formula
is indeed correct.

This is a most remarkable result since the validity of
the Witten-Veneziano formula, as demonstrated by our
non-perturbative lattice computations, provides a strong
confirmation that the heavy mass of the η′ meson is of
topological nature.

r0mη r0mη′ r0mK r0 fπ
1.256(22) 2.29(0.21) 1.13476(5) 0.312(11)

r4
0

f 2
π

4N f

(
m2
η + m2

η′ − 2m2
K

)
= 0.043(4)

r4
0χ∞=0.049(6)

Table 6: Lattice results of the meson masses and the corresponding
left-hand side of the Witten-Veneziano formula. χ∞ is the topolog-
ical susceptibility in the pure gauge theory computed using spectral
projectors.

8.5. gµ − 2
Within this work, we have provided the first

four-flavour lattice calculation [107] of the leading-
order hadronic vacuum polarisation contribution to the
anomalous magnetic moment of the muon, ahvp

µ . Sev-
eral light quark masses are used in order to yield a con-
trolled extrapolation to the physical pion mass. In ad-
dition, three lattice spacings are used to examine lat-
tice artefacts and several different volumes to check for
finite-size effects. Including the complete first two gen-
erations of quarks is important for two reasons. The
first is that the charm quark contribution to ahvp

µ is of the
same order as the light-by-light contribution. Hence, at
the level when this light-by-light contribution becomes
important to be included the charm quark contribution
should be know to a sufficient accuracy. Second, a four
flavour analysis of ahvp

µ avoids any ambiguity in the dis-
entanglement of different flavour contributions to ahvp

µ .
Therefore, a full four flavour computation of ahvp

µ allows
for a direct comparison with phenomenological deter-
minations of this quantity.

Using the ensembles generated with N f = 2 + 1 + 1
flavours of active quarks, the same strategy as explained
in section 5.1 has been used to determine the leading or-
der hadronic contributions to ahvp

µ . The different flavour
contributions are listed in table 7. We note that in an-
other work [184] also the different flavour contributions
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are listed. We find a full agreement with the numbers
obtained in ref. [184].

ahvp
µ,up,down ahvp

µ,strange ahvp
µ,charm

5.67(11) · 10−8 5.36(19) · 10−9 1.418(61) · 10−9

Table 7: A comparison of the different flavour contributions for the
leading order hadronic contribution to the muon anomalous magnetic
moment. The strange and charm quark contributions are taken from
ref. [4].

We also performed a comprehensive analysis of the
systematic errors in the evaluation of ahvp

µ . In table 8
we list the systematic errors originating from different
fit intervals to extract the ρ-meson mass and employing
different fit ansaetze, i.e., different numbers of terms in
eq. (20). Investigating finite volume effect, the match-
ing condition to find the physical Kaon and D-meson
masses and using different active strange and charm
quark masses lead to negligible systematic effects. A
particular emphasis has been laid on dis-connected con-
tributions. Here, a high statistics analysis has been car-
ried out and the conclusion is that within the statisti-
cal error, the dis-connected contributions are negligible.
This finding has been strengthened by a computation
of the dis-connected contribution using the local vec-
tor current which provides an accurate determination of
the dis-connected contribution [4].

∆V 0.13 · 10−8

∆fit 0.12 · 10−8

Table 8: Summary of systematic uncertainties. ∆V is the systematic
uncertainty from the choice of fit range for the vector mesons. ∆fit is
the uncertainty from using different fit ansätze for fitting the vacuum
polarization function.

Taking the statistical and systematic errors into ac-
count, we find

ahvp
µ = 6.74(21)(18) · 10−8 (45)

where the first error is statistical and the second error is
from systematic uncertainties. We compare the result of
eq. (45) with the extraction from dispersion relations in
fig. 18. As can be seen, the value of ahvp

µ is fully com-
patible with the phenomenological extractions while the
error is still larger. Nevertheless, it is clear that the er-
ror can be reduced in the future by employing a larger
statistics and new methods like the all-mode-averaging
approach of ref. [185, 186].

Davier et al. (τ)

Davier et al. (e+e−)

Jegerlehner, Szafron

Hagiwara et al.

HLS estimate

This work

ahvpµ

7.4e-087.2e-087e-086.8e-086.6e-08

Figure 18: Comparison of our first four-flavour lattice result of ahvp
µ

with different results based on dispersion relations: Davier et al. [187],
Jegerlehner and Szafron [188], Hagiwara et al. [189], and HLS [190]

8.6. Method of analytical continuation
An alternative approach to analyze lattice data for the

vacuum polarization function is the method of analytic
continuation [191] which is closely related to the work
in refs. [192, 193].

The basic idea of this method is to express the
hadronic vacuum polarization function through a spa-
tial Fourier transformation and an exponential weight in
time direction of the vector correlation function,

Π̄(K2)(KµKν − δµνK2) =∫
dt eωt

∫
d3~x ei~k~x〈Ω|T {JE

µ (~x, t)JE
ν (~0, 0)}|Ω〉 (46)

where JE
µ (X) is the electromagnetic current,

K = (~k,−iω) with ~k the spatial momentum and ω
the photon energy. The essential point is that only for
the spatial indices a standard Fourier transformation
is carried out while in time we have a real time
transformation.

This method allows, in principle, to compute the
HVP function at small space-like momenta and even
at time-like momenta. We will show the feasibility of
the method here at the example of the Adler function
in fig. 19. Here we compare directly to a dispersive
analysis [194]. As can be seen, although the errors of
our lattice calculation is still larger, we find a very good
agreement for the whole range of momenta, including
time-like ones. In refs. [191, 195] the analytic contin-
uation method has been employed for computing the
leading order hadronic contribution of the muon anoma-
lous magnetic moment. As a result it was found that
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the analytic continuation method does lead to a simi-
lar accuracy as the standard method discussed above. It
can thus, at least presently, be considered as an alter-
native approach to compute ahvp

µ . It is worth stressing
that the analytic continuation method is applicable for a
much larger class of observables such as momentum de-
pendent form factors and quantities related to scattering
processes or resonances, see e.g. [196].
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Figure 19: The renormalized vacuum polarization function from our
lattice data (a ≈ 0.078 fm, V = (2.5fm)3) together with a comparison
to the dispersion relation data from [194].

8.7. Charm quark mass and αs

As a very interesting further application of the avail-
able vector correlators that has been used in the N f =

2+1+1 computation of the hadronic contribution to the
muon anomalous magnetic moment is their short dis-
tance behaviour for the charm sector. The charm quark
is sufficiently heavy to allow for a perturbative treatment
of these correlators at short distances [197, 198].

The perturbative expansion can then be compared to
either experiment or to lattice results. To be more spe-
cific, such a comparison is done by looking at the tem-
poral moments in the framework of the so-called cur-
rent correlator method [199]. The temporal moments in
lattice QCD have their equivalent counterparts in exper-
iment. There they can be extracted from the (energy)
moments of the hadronic e+e− → γ∗ → hadrons cross-
section ratio R, see e.g. ref. [200]. In perturbative QCD
the low-order derivatives of the polarization functions
associated with the quark-bilinear current-current cor-
relators can be computed most remarkably at the 4-loop
level. Comparing lattice results of such moments to
their experimental counterpart can provide a direct test
of QCD. In addition, comparing the perturbative QCD

results of the temporal moments to lattice results pro-
vides access to determine the fundamental QCD param-
eters αs and the charm quark mass.

In Ref. [199] it has been demonstrated that the mo-
ments of current-current correlation functions can in-
deed be used to match to perturbation theory and to ex-
tract the strong coupling constant and the charm quark
mass. We will here give the example of the vector cur-
rent correlation function [201] but emphasize that also
other current-current correlation functions can and have
been used which stabilizes the analysis and gives more
precise results.

The starting point is the correlation function

Cav
j j (t) =

1
V3

∑
~x

JC
j (~x, t)JC

j (~0, 0) (47)

where JC
j (~x, t) is the vector current already discussed

above. The correlation function of eq. (47) can be used
to construct the moments

Mn
L =

1
n!

(
d

d K̂2

)n

Π(K̂2)

∣∣∣∣∣∣
K̂=0

=
a2n

3

tmax/a∑
s=1

C(s, n) Cav
j j (t) (48)

with the coefficient function

C(s, n) = 2s (−1)n+1 (s + n)!
(s − n − 1)! (2n + 2)!

. (49)

A direct comparison of the so established moments
with their experimental counterparts is given in table 9.
As can be seen for the first four moments a convinc-
ing agreement is found. Using moments evaluated on
the lattice with maximally twisted mass fermions and
adding also those from the other current-current corre-
lation functions, such as the pseudo scalar current, we
have determined the charm quark mass and the strong
coupling constant αs. This could be achieved by mak-
ing use of the Mathematica package of ref. [202].

In fig. 20, we give the 1 − σ contour graph for both
quantities as determined in the chiral and the contin-
uum limit. Clearly, while the charm quark mass can be
extracted rather precisely, the Strong coupling constant
has a large error. Nevertheless, when using αs as an in-
put, an accurate value for the charm quark mass can be
achieved. Note however that intrinsic uncertainties of
the perturbative expansion, as discussed partly in [203],
can add a non-negligible systematic error.
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no. Mn
c · 102+n M

n,N f =2
L · 102+n M

n,N f =2+1+1
L · 102+n

1 4.115 (59) 4.191 (63) 4.152 (94)
2 2.844 (51) 2.872 (54) 2.828 (73)
3 2.493 (51) 2.528 (54) 2.462 (70)
4 2.373 (51) 2.397 (57) 2.299 (71)

Table 9: Comparison of continuum and lattice moments, given in units
of GeV2n, of order 1 to 4.
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Figure 20: The 1-σ contour plot of the charm quark mass and αs
as extracted from temporal moments computed in our twisted mass
lattice setup of QCD.

8.8. Other physical quantities
Within our work in the twisted mass lattice formu-

lation of QCD, a number of other quantities have been
computed that we here list shortly.

• Rather easy to access, but nevertheless important
quantities are the meson decay constants fK , fD,
fDs . In [204] we have performed a comprehen-
sive analysis of these quantities for N f = 2 mass-
degenerate flavours of quarks. A first account for
the setup of maximally twisted mass lattice QCD
with N f = 2 + 1 + 1 flavours of active sea quarks
has been given in [205]. For the pseudo scalar
decay constants we follow the mixed action ap-
proach described in section 7 by using so called
Osterwalder-Seiler fermions in the valence sector
for strange and charm quarks. The data for two
values of the lattice spacing and several values of
the up/down quark mass have been analyzed using
chiral perturbation theory. In fig. 21 we show an
example of such fits for the case of the pion and
Kaon decay constants. Similar analyses have been
performed for the the decay constants of the D- and
the Ds mesons, fD and fDs , using SU(2) heavy me-
son chiral perturbation theory [206], see also [204]
and [204] for more details.
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Figure 21: Pion and Kaon decay constants as a function of m2
π. Data

are shown for two values of the lattice spacing a = 0.079 fm and
a = 0.060 fm.

N f fK fD fDs Vus

2 158.1(2.4) 197(9) 244(8) 0.220(3)
2+1+1 160(2) 204(3) 248.9(5.3) 0.220(2)

Table 10: Our results for the pseudo scalar decay constants (in units
of MeV) after extrapolation to the continuum and chiral limits. We
also give our estimates for the CKM matrix element Vus. Values for
both setups with N f = 2 and N f = 2 + 1 + 1 flavours are listed for
which we take the values of fK and Vus from ref. [205].

We mention that the result for fK/ fπ can give a
value for the CKM matrix element Vus. To this
end, the experimental measurement of Γ(K →

µν̄µ(γ))/Γ(π → µν̄µ(γ)) [207] can be used to get
first a determination of the ratio |Vus|/|Vud | [208].
Combing this with the determination |Vud | =

0.97425(22) [209] from nuclear beta decays, yields
the estimate given in table 10.

• Another important quantity in QCD is the Λ pa-
rameter. We have determined ΛMS for n f = 2
dynamical quark flavours by fitting the QQ̄ static
potential to perturbation theory [210]. There, the
static potential is known analytically up to terms of
O(α4

s) and ∼ α4
s lnαs [211, 212]. The comparison

of high-loop order of perturbation theory and lat-
tice results of the static potential has become pos-
sible, due to recent advances in both perturbative
calculations, namely the determination and publi-
cation of the last missing contribution to the QQ̄
static potential at O(α4

s), and lattice simulations
with n f = 2 dynamical quark flavors performed
at the rather fine lattice spacing of a ≈ 0.042 fm.

We have undertaken a comprehensive analysis of
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systematic effects [210] in the comparison with
perturbation theory which leads to a value Λ

N f =2

MS
=

315(30) MeV where the error includes both the sta-
tistical and the systematic one. A similar analy-
sis on the same twisted mass gluon field configu-
rations, but performed in momentum space [213]
yields a values of Λ

N f =2

MS
= 331(21) MeV which

is fully compatible with our coordinate analysis of
ref. [210].

• The Kaon bag parameter BK controls K0 − K̄0 os-
cillations. It is thus an important quantity and
it is of fully non-perturbative nature, requiring a
lattice QCD computation. We have calculated
BK in a partially quenched setup with two maxi-
mally twisted dynamical (sea) light Wilson quarks
[214]. In the valence sector we used Osterwalder–
Seiler fermions. Employing the non-perturbative
RI-MOM scheme, in the continuum limit and at
the physical value of the pion mass we get the
renormalization group invariant quantity BRGI

K =

0.729 ± 0.030, see fig. 22.
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Figure 22: The renormalization group invariant Kaon bag parameter
BRGI

K,lat as function of (a f0)2, using two methods labeled as M1 and
M2, which originate come from different procedures for evaluating
the renormalization constants ZAV+VA and ZA. As can be seen in the
graph BRGI

K,lat agrees in the continuum limit from the two methods used.

• Within this project, we have also developed a new
method to extract B-physics parameters , e.g. the
b-quark mass and decay constants [215]. The ba-
sic idea is to construct ratios of heavy-light meson
masses and decay constants which assume an ex-
actly known value in the static limit. By computing
these ratios at various heavy quark masses cover-
ing the charm quark mass a smooth interpolation

–in contrast to the often used extrapolation– can be
performed to the static limit. In this way, results
for the b quark mass and various B-meson decay
constant can be extracted and the systematic errors
can be evaluated quantitatively. The method, first
proposed in [215] has been very successfully ap-
plied for many quantities relevant for heavy flavour
physics, see ref. [216] for a recent overview.

9. Conclusion and outlook

In this project of the transregional collaborative re-
search center, we have established maximally twisted
mass fermions as a valuable alternative for lattice QCD
computations. In particular, we have demonstrated that
this approach can be used to simulate the first two quark
generations and to be able to reach the physical value of
the pion mass.

Within the project a large number of physical quan-
tities has been calculated spanning fundamental param-
eters of QCD, decay constants, scattering phenomena
and hadronic contributions to electroweak observables.
For the computations of these quantities, it has been in-
strumental that with twisted mass fermions at maximal
twisted automatic O(a)-improvement can be realized.
This led to small cutoff effects and allowed controlled
continuum limit extrapolations in many cases without
the need to compute further improvement coefficients.

Within the project discussed here also new directions
emerged. The first is the extension of the simulations to
the case of non-zero temperature, where the phase struc-
ture of twisted mass fermions [217] and the equation
of state [218, 219, 220] could be determined. For this
work, information from the results at zero temperature
as described in this contribution has been very important
to set the physical scale and to tune the non-zero tem-
perature setup to maximal twist. Details of the non-zero
temperature simulations are given in a separate contri-
bution [81].

Another effort has been started within this project to
revisit the Hamiltonian approach to lattice field theory.
Employing the method of tensor network –and in par-
ticular matrix product– states, it has been demonstrated
at the example of the Schwinger model that it is pos-
sible to compute the spectrum [221] of the model and
also to address non-zero temperature [222]. These first
very encouraging results could open the way to perform
computations at a non-zero chemical potential and also
perform real time simulations. Although this is clearly
a fascinating perspective, it needs still new theoretical
and conceptual developments to apply the tensor net-
work technique to lattice QCD.
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As a final development initiated in this project,
we mention the Quasi Monte Carlo (QMC) technique
which we used for the first time for a lattice model, the
quantum mechanical harmonic and anharmonic oscilla-
tor [223, 224]. This approach can change the error be-
haviour of a standard Markov Chain Monte Carlo simu-
lation from 1/

√
N to 1/N or even better with N the num-

ber of samples. Again, investigations of this approach
are in their infancy and it is to be awaited, whether the
QMC technique can be used for realistic quantum field
theoretical models in higher dimensions.

In summary, the goal of this work has been the inves-
tigation of new approaches to address questions in lat-
tice field theory with an emphasis on lattice QCD. The
fact that we now are performing simulations at the phys-
ical point with new algorithmic techniques that were de-
veloped in this project shows that the project has been
successful. It has also been very rewarding that further
new methods could be developed, such as special tech-
niques to compute dis-connected graphs, the extension
to non-zero temperature and the first calculations with
matrix product states and QMC.
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[90] M. Lüscher, JHEP 12, 011 (2007), arXiv:0710.5417

[hep-lat].
[91] M. A. Clark and A. D. Kennedy, Phys. Rev. D75, 011502

(2007), arXiv:hep-lat/0610047.
[92] M. Luscher, arXiv:1002.4232 [hep-lat].
[93] A. Abdel-Rehim et al., arXiv:1311.5495 [hep-lat].
[94] A. Deuzeman, K. Jansen, B. Kostrzewa and C. Ur-

bach, PoS LATTICE2013, 416 (2013), arXiv:1311.4521
[hep-lat].

[95] ETM Collaboration, P. Boucaud et al., Com-
put.Phys.Commun. 179, 695 (2008), arXiv:0803.0224

[hep-lat].
[96] S. Weinberg, Physica A96, 327 (1979).
[97] J. Gasser and H. Leutwyler, Ann. Phys. 158, 142 (1984).
[98] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[99] G. Colangelo and S. Durr, Eur.Phys.J. C33, 543 (2004),

arXiv:hep-lat/0311023 [hep-lat].

http://arxiv.org/abs/1210.1798
http://arxiv.org/abs/0705.2539
http://arxiv.org/abs/0707.3849
http://arxiv.org/abs/0902.4135
http://arxiv.org/abs/1002.4336
http://arxiv.org/abs/1111.4789
http://arxiv.org/abs/1011.1648
http://arxiv.org/abs/1301.3416
http://arxiv.org/abs/1310.6260
http://arxiv.org/abs/0707.4093
http://arxiv.org/abs/0707.4093
http://arxiv.org/abs/hep-lat/0411001
http://arxiv.org/abs/hep-lat/0312013
http://arxiv.org/abs/hep-lat/0503031
http://arxiv.org/abs/hep-lat/0507010
http://arxiv.org/abs/0911.5061
http://arxiv.org/abs/0710.1517
http://arxiv.org/abs/0710.2498
http://arxiv.org/abs/0803.3190
http://arxiv.org/abs/hep-lat/0503034
http://arxiv.org/abs/hep-lat/0507032
http://arxiv.org/abs/1003.0847
http://arxiv.org/abs/hep-lat/0610085
http://arxiv.org/abs/1008.0784
http://arxiv.org/abs/1008.0784
http://arxiv.org/abs/0908.0451
http://arxiv.org/abs/hep-lat/0701012
http://arxiv.org/abs/hep-lat/0610059
http://arxiv.org/abs/hep-lat/0610059
http://arxiv.org/abs/hep-lat/0701009
http://arxiv.org/abs/hep-lat/0701009
http://arxiv.org/abs/hep-lat/9510042
http://arxiv.org/abs/hep-lat/0506011
http://arxiv.org/abs/hep-lat/0406039
http://arxiv.org/abs/hep-lat/0410031
http://arxiv.org/abs/hep-lat/0506025
http://arxiv.org/abs/hep-lat/0512017
http://arxiv.org/abs/hep-lat/9804028
http://arxiv.org/abs/hep-lat/0411021
http://arxiv.org/abs/hep-lat/0407025
http://arxiv.org/abs/hep-lat/0407006
http://arxiv.org/abs/hep-lat/0311032
http://arxiv.org/abs/1103.1494
http://arxiv.org/abs/hep-lat/0409006
http://arxiv.org/abs/hep-lat/0509002
http://arxiv.org/abs/hep-lat/0309057
http://arxiv.org/abs/hep-lat/0409098
http://arxiv.org/abs/hep-lat/0107019
http://arxiv.org/abs/hep-lat/0311039
http://arxiv.org/abs/0905.3331
http://arxiv.org/abs/https://github.com/etmc/tmLQCD
http://arxiv.org/abs/hep-lat/0409106
http://arxiv.org/abs/0710.5417
http://arxiv.org/abs/0710.5417
http://arxiv.org/abs/hep-lat/0610047
http://arxiv.org/abs/1002.4232
http://arxiv.org/abs/1311.5495
http://arxiv.org/abs/1311.4521
http://arxiv.org/abs/1311.4521
http://arxiv.org/abs/0803.0224
http://arxiv.org/abs/0803.0224
http://arxiv.org/abs/hep-lat/0311023


K. Jansen / Nuclear Physics B Proceedings Supplement 00 (2015) 1–25 24
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