
Nuclear Physics B Proceedings Supplement 00 (2014) 1–13

Nuclear Physics B
Proceedings
Supplement

Parallel versions of FORM and more

Matthias Steinhauser, Takahiro Ueda

Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

Jos A.M. Vermaseren

Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands

Abstract

We review the status of the parallel versions of the computer algebra system FORM. In particular, we provide a
brief overview about the historical developments, discuss the strengths of ParFORM and TFORM, and mention typical
applications. Furthermore, we briefly discuss the programs FIRE and FIESTA, which have also been developed with
the Collaborative Research Center/TR 9 (CRC/TR 9).

Keywords: Computer algebra, FORM, multi-loop integrals, reduction to master integrals, numerical evaluation of
Feynman integrals

1. Introduction

The symbolic manipulation of complicated formu-
lae has a long tradition in particle physics. Com-
puter algebra systems (CAS) have been used already
quite early in order to evaluate, e.g., traces over γ
matrices. Among the first CAS there are REDUCE [1] by
A. Hearn, SCHOONSCHIP [2–4], designed by M. Velt-
man, ASHMEDAI [5] by M. Levine, and Macsyma [6]
developed at MIT. Afterwards Mathematica [7],
Maple [8] and others have been developed which are
still in use nowadays. However, their field of applic-
ation is limited to small and medium sized problems
since it is not possible to work with very large inter-
mediate expressions. On the other hand, there are quite
a number of problems which produce intermediate ex-
pressions of the order of a few hundred giga bytes up to
tera bytes to be manipulated by the CAS. The only CAS
currently available in order to cope with such tasks is
FORM [9, 10].
FORM is a program for the symbolic manipulation of

algebraic expressions. It is specialized to handle very
large algebraic expressions of billions of terms in an ef-
ficient and reliable way. That is why it is widely used,

in particular in the framework of perturbative Quantum
Field Theory, where often several thousands of Feyn-
man diagrams have to be computed. However, the abil-
ities of FORM are also quite useful in other fields of sci-
ence where the manipulation of huge expressions is ne-
cessary.

FORM is constructed in such a way that the size of the
expressions is not restricted by the main memory of the
computer but only by the space available on hard disk.
In addition its data representation is very dense when
compared to other general purpose systems. Actually
in modern applications in particle physics it happens
quite often that the size of intermediate expressions for
each Feynman diagram may become huge. As a con-
sequence, even with FORM such calculations require a
CPU time of several years despite the steady advance-
ment of the hardware and the continuous improvement
of the algorithms. Furthermore the resources as far as
CPU speed, memory and disk space are concerned are
often not sufficient.

One of the most efficient ways to increase the per-
formance is based on parallelization which makes sim-
ultaneously available the resources of several computers

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 2

and thereby significantly reduces the wall clock time. In
fact, the project to obtain a parallel version of FORM has
been started at the end of the nineties. In the recent
years ParFORM [11] and TFORM [12] have become reli-
able tools which shall be described in this contribution.

There is a number of calculations performed within
project A1 of the CRC/TR 9 where ParFORM and TFORM
were essential for the successful completion [13–27]. In
all these cases the single-core CPU time was estimated
to several years. Parallelization could reduce the wall
clock time to weeks and months at most.

As a further application we want to mention Ref. [28]
where FORM was used to solved exceptionally large sys-
tems of equations to create mathematical tables for gen-
eral use in mathematics and physics.

The calculation of three-loop helicity-dependent
splitting functions in QCD [29, 30] also could only be
completed thanks to FORM because expressions of one
tera byte or more were no exception and at one point
more than 6 tera bytes of diskspace was needed for a
single diagram.

Within the CRC/TR 9 two concepts for parallel ver-
sions of FORM have been successfully developed and im-
plemented: ParFORM, essentially based on MPI (mes-
sage passing interface), and TFORM which uses threads
for the parallelization. Both programs run stable, show
a good speedup and are complete in the sense that all
programs written for the serial version of FORM can now
be used with ParFORM and TFORM. In Sections 4 and 5
details to the parallel versions are provided.

In this project of the CRC/TR 9 also programs con-
cerned with the reduction of families of Feynman integ-
rals to a small set of basis elements (master integrals)
and their numerical evaluation have been developed.
These two topics are covered in two program packages,
FIRE and FIESTA, which are discussed in Section 6

We continue this review in Section 2 with some his-
torical remarks concerning the first steps towards par-
allelization of FORM and describe in Section 3 the basic
features of FORM.

2. Historical remarks

The first initiatives of parallizing FORM go back to
early 1991, when version 1 of FORM was made to run on
a computer at the Fermi National Accelerator Laborat-
ory (FNAL) which was designed for lattice calculations
and had 257 processors. Due to limitations in accessib-
ility this project was discontinued, but the further devel-
opment of FORM took this experience into account.

The first systematic study of a parallel version of
FORM has been performed within the DFG-funded Re-

1000
2000
3000
4000
5000
6000
7000
8000
9000

2 3 4 5 6 7 8

T
im

e
(s

ec
)

Number of processors p

1

2

3

4

2 3 4 5 6 7 8

S
p

ee
d

u
p

Number of processors p

Figure 1: Speedup for the program BAICER on Compaq-AlphaServer
with 8 Alpha (EV67) processors with 700 MHz.

search Unit “Quantenfeldtheorie, Computeralgebra und
Monte-Carlo Simulation” which ran from 1996 to 2002
and thus can be considered as a precursor to the
CRC/TR 9. In Ref. [31] a first parallel prototype of
FORM has been presented and results for several stud-
ies like the runtime for the parallel sorting on different
architectures are shown.

One year later, in July 2000, the first “working par-
allel FORM prototype, ParFORM”, has been introduced in
Ref. [32]. It was based on the syntax of a preliminary
version of FORM 3 which at that time was not published
yet. In [32] the parallelization on clusters has been dis-
cussed based on the following hardware:

• Digital workstation cluster (TTP Karlsruhe) run-
ning DEC UNIX 4.0D 8 nodes with 600 MHz
Alpha 21164A (EV56) processors and 512 MB
RAM,

• PC cluster (TTP Karlsruhe) running Linux 2.2.13
4 nodes with 500 MHz Intel Pentium III processors
and 256 MB RAM,

• IBM SP2 (Computing Center Karlsruhe) running
AIX 4.2.1 160 thin P2SC nodes with 120 MHz pro-
cessors and 512 MB RAM (256 nodes in total).

Next to several feasibility studies also results for the
speedup of a MINCER [33] job is shown. A reason-
able speedup of 2.5 with four nodes on the PC cluster, a
factor of 4.5 with eight nodes on the Alpha cluster and a
factor of 6 with twelve nodes on the IBM SP2 has been
reported. As a first physical application of ParFORM

higher moments of deep inelastic structure functions at
next-to-next-to-leading order of perturbative QCD have
been computed in Ref. [34].

At a later stage of the Research Unit ParFORM was
further developed and one could run parallel FORM jobs
on symmetric multiprocessing (SMP) computers (not
only on clusters). In Fig. 1 the speedup is shown for
the test program BAICER, a FORM program developed to
compute massless four-loop two-point integrals within
the project A1 of the CRC/TR 9, running on a

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 3

0

1000

2000

3000

4000

5000

6000

7000

4 8 12 16 20 24 28 32

T
im

e
(s

ec
)

Number of processors p

0

2

4

6

8

10

12

14

4 8 12 16 20 24 28 32
S

p
ee

d
u

p
Number of processors p

Figure 2: Computing time and speedup for the test program BAICER
on the SGI Altix 3700 server with 32x Itanium-2 processors (1.3
GHz).

• Compaq-AlphaServer GS60e, 8 Alpha (EV67)
processors (700 MHz).

A speedup of about 4.5 could be achieved using eight
processors.

Two years after the start of the CRC/TR 9 a first
version of ParFORM operating on Cluster- and SMP-
architectures was discussed in Ref. [11]. It could run
arbitrary FORM programs in parallel and was based on
FORM 3 version 3.1 [9]. At that time there were already
a number of applications which would not have been
possible without ParFORM [13, 14, 16, 34].

For the calculations and for the development of
ParFORM a 32-core computer was available

• SGI Altix 3700 Server 32x 1.3 GHz/3 MB-SC
Itanium-2 CPUs 64 GB DDR/116 MHz mem, 2.4
TB SCSI hard disks.

The results for the test program BAICER are shown in
Fig. 2. The speedup is almost linear up to twelve pro-
cessors. Afterwards it flattens but is still considerable.
An achieved speedup of 12 means that a FORM job that
would need one year of computing time can be run as
ParFORM job in about one month. This leads to a qual-
itatively new level, because it would practically be im-
possible to run jobs for years whereas months are feas-
ible nowadays. Fig. 2 shows that with 16 processors a
speedup of 10 could be reached. This means that one
can run on a 32-processor computer two jobs simultan-
eously, having the speedup of 10 for each of them.

In the paper [35] the functionality of FORM and
ParFORM was extended and facilities were introduced
to communicate with external resources. This mechan-
ism enables the user to include into the FORM programs
other pieces of software which are used as black box in
order to take over certain tasks. As a typical example we
want to mention is fermat [36], which can compute the
greatest common divisor of multi-variable polynomials
efficiently.

Sorting

Generating

Terms
...

Input

Output

Process
term by term

Figure 3: Graphical representation of the processing of an input ex-
pression in FORM.

In February 2007 TFORM [12] based on POSIX threads
has been released, a further major step in the develop-
ment of parallel FORM versions. For later developments
and further comparisons between ParFORM and TFORM

we refer to the proceedings contributions [37–40] and
to Sections 4 and 5.

The more recent developments concern the release of
FORM 4.0 [10] and the inclusion of tools to generate op-
timized code [41] which is used as input in FORTRAN or
C programs for numerical integrations.

3. Sequential version of FORM

This article is not intended as an introduction to FORM

or even a reference manual. Nevertheless we want to
describe the basic features which are important in the
context of parallelization.

A FORM program is in general divided into so-called
modules which are terminated by a “dot”-instruction.
During the execution of the program, which is only
possible in batch-mode, each module is processed sep-
arately one after the other which essentially occurs in
three steps

• Compilation: The input is translated into an in-
ternal representation.

• Generating: For each term of the input expressions
the statements of the module are executed. This in
general generates a lot of terms.

• Sorting: All the output terms that have been gen-
erated are sorted and equivalent terms are summed
up.

This is illustrated in Fig. 3.
The fundamental objects which are manipulated by

FORM commands are expressions which are viewed as
sums of individual terms (see also Fig. 3). Next to a
sophisticated pattern matcher, it is the strength of FORM
that only local operations on single terms are allowed,
like replacing parts of a term by some other expressions.

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 4

S
e
c
o
n
d
 m

o
d
u
le

F
ir

s
t

m
o
d
u
le

G e n e r a t i n g

S o r t i n g

First
term

Second
term

G e n e r a t i n g

S o r t i n g

id x = a + b;

.sort

endif;

.end

if(count(b,1)==1);
multiply 4*a/b;

print;

l expr = a*x+x^2;

+14*a^2 +b^2

a*x +x^2

+2*a^2 +3*a*b +b^2

+a^2 +a*b +a^2 +a*b +a*b +b^2

+2*a^2 +12*a^2 +b^2

Figure 4: Example for the generation and sorting of data in FORM.

Non-local operations like replacing a sum of two terms
are not allowed. For example, the command identify

(short: id) identifies the left-hand side with the right-
hand side and can be used as

id a = b + c;

On the other hand, the usage

id a + b = c;

would lead to an error message.
Non-local operations are allowed only implicitly,

e.g., in the sorting procedure at the end of the modules,
where equivalent terms are combined. At first sight this
seems to be a strong limitation for the formulation of
general and efficient algorithms. It is usually possible
to get around this limitation by designing algorithms in
clever and non-standard ways.

Due to the locality of the operations it is possible
to handle expressions as “streams” of terms that can
be read sequentially from the memory or a file and
processed independently. This enables FORM to deal
with expressions that are larger than the available main
memory.

An example illustrating the principle operating mode
of a FORM program is shown in Fig. 4. It corresponds to
the simple program

l expr = a*x + x^2;

id x = a + b;

.sort

if (count(b,1)==1);

multiply 4*a/b;

endif;

print;

.end

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Master

Master

Worker I

I chunk II chunk

Worker II

output result,Final sorting,
go to the next module

id x = a + b;
l expr = a*x+x^2+b*x+...

2*a^2 +3*a*b +b^2

 a*x +x^2 +b*x ...

 a*x +x^2 +b*x ...

a^2 +a*b +a^2 +2a*b +b^2

G e n e r a t i n g

S o r t i n g

Figure 5: General conception of ParFORM.

4. ParFORM

4.1. The concept of ParFORM

As mentioned above, the locality principle enables
FORM on the one hand to deal with expressions that are
larger than the available main memory, on the other
hand it also allows for parallelization. The concept im-
plemented in ParFORM is straightforward and indicated
in Fig. 5: in a first step the master process splits the ex-
pression into pieces, so-called chunks. Each chunk is
sent to one of the workers where an independent FORM
process runs, i.e. the module to be executed is compiled,
the terms are generated, sorted and sent back to the mas-
ter. Once all worker processes have finished their jobs
the master performs the final sorting.

The communication between master and workers is
based on the message passing interface (MPI) stand-
ard [42] which provides a library for the data transfer
between processes. Message passing permits to paral-
lelize FORM on computer architectures both with shared
memory, i.e. SMP computers and on computer clusters.
The way the master communicates with the workers is
sketched in Fig. 6.

It is worth mentioning that the parallelization does
not require any additional efforts from the user. It is
possible to run the programs written for the sequential
version using ParFORM and adding a specification con-
cerning the number of processors. It is clear that differ-
ent codes show a different performance and efficiency
in the parallel version. In particular, modules in which
the outcome depends on the order in which the terms

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 5

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

WAITING

RESULT

WORKING

Worker 1
Output of:

WORKING

D
A

T
A

M
P

I
Master

PROCESS0
Worker1 Worker2

PROCESS1 PROCESS2
mpirun −np 3 parform

Input for:

D
A

T
A

D
A

T
A

Worker 1 Worker 2

Worker 2

Figure 6: Visualization of the mode of operation of ParFORM based
on MPI.

are processed cannot be parallelized and are executed
in sequential mode. This concerns mostly the use of
the dollar variables which were introduced in version 3.
In the case that FORM would switch to sequential mode,
while actually this is not needed, the user can add an ex-
tra statement to overrule such a decision and tell FORM
how to deal with the ‘dubious’ case.

4.2. ParFORM on a NUMA architecture
The SGI Altix computer is realized with a so-called

NUMA architecture where NUMA stands for non-
uniform memory access. This means that the individual
processors have a faster access to some parts of the
main memory than to others. A specialized version of
ParFORM has been developed which exploits the feature
and, at the same time, does not use MPI and the over-
head connected to it. The corresponding scheme of op-
eration is illustrated in Fig. 7.

Using the specialized version of ParFORM in connec-
tion with the 32-core SGI Altix a considerable improve-
ment of the speedup could be obtained, as can be seen in
Fig. 8. In fact, for 16 processors the speedup improved
from 8 to 10, for 32 processors from 10 to 13 (see also
the discusion in the next subsection).

4.3. ParFORM on clusters and multi-core nodes
At present, there are a number of calculations of

physical quantities which would not have been possible
without the gain in performance and speedup provided

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

PROCESS0

D
A

T
A

S
H

A
R

E
D

D
A

T
A

S
H

A
R

E
D

D
A

T
A

PROCESS2

Worker 1

D
A

T
A

D
A

T
A

WORKINGWAITING WORKING

RESULT

Worker2

Worker 2Master

Worker 2

Input for:
Worker 1

Output of:

PROCESS1
Worker1

Figure 7: Mode of operation implemented into ParFORM for a NUMA
architecture.

by ParFORM (see, e.g., Refs. [14, 34]). Most of the ap-
plications are connected to the evaluation of four-loop
Feynman integrals which occur in the context of per-
turbative quantum field theory. In particular, there are
algorithms which transform the mathematical complex-
ity of the original problem to the need of simple manip-
ulations of rather large polynomial expressions which
have billions or even more terms. Manipulations of this
type constitute the basis of the speedup curves which
are discussed in the following.

The results for the test program running on a SGI
Altix 3700 server with 32 Itanium-2 processors are
shown in Fig. 8 where both the runtime and the speedup
(as compared to the sequential version) is shown as a
function of the number of processors, p, involved in the
calculation. The almost horizontal line between p = 1
and p = 2 is due to the fact that for p = 2 one of the
processors takes over the role of the master and the other
one of the worker. Thus a real reduction of the CPU time
only starts from p = 3. It is interesting to note that the
speedup is almost linear up to twelve processors. Fur-
thermore, for 16 processors the program is faster by an
order of magnitude. As a consequence instead of years
one only has to wait a few months in order to obtain the
results of a calculation. This provides the possibility to
consider qualitatively new kinds of problems, since in
practice it is impossible to run a job for years whereas a
few months are feasible nowadays. Beyond p = 16 the

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 6

 0

 2

 4

 6

 8

 10

 12

 14

 2 6 10 14 18 22 26 30

S
p

ee
d

u
p

Number of processors p

speedup SM
speedup MPI

Figure 8: Runtime and speedup for the test program BAICER running
on a SGI Altix 3700 server with 32 Itanium-2 processors (1.3 GHz).
The lower curve corresponds to the MPI version and the upper one to
the shared memory version of ParFORM.

curve becomes more flat, however, the speedup is still
considerable up to 32 processors.

The latest speedup plot for (the MPI version of)
ParFORM is shown in Fig. 9 where BAICER is running
on the cluster ttpmoon which has the following config-
uration:

• Computer cluster (TTP Karlsruhe) running Linux,
8 nodes with 2 Hexa-Core Intel Xeon X5675 (3.07
GHz), 96 GB RAM, and 3.6 TB local hard disk
(Raid 0 with 6 stripes), interconnected by QDR In-
finiBand.

The top plot shows the used time in minutes as a func-
tion of the involved CPUs (including the master) and on
the bottom the speedup as compared to the serial ver-
sion is plotted.1 It is interesting to note that a spee-
dup of about 10 is reached in case 16 CPUs are used,
a value obtained in Fig. 8 for the shared memory ver-
sion which avoids the use of MPI, cf. Subsection 4.2.
For higher number of CPUs the curve flattens but nev-
ertheless reaches a speeup above 20 for 96 CPUs.

4.4. ParFORM on “low-level” clusters

ParFORM has been successfully installed on several
clusters. In Fig. 10 the corresponding speedup curves
are shown and compared to the curve from Fig. 8 ob-
tained on the SMP computer. The cluster XC6000

1Note, that there is no data point for two CPUs; otherwise one
would observe a flat behaviour between one and two CPUs and only
then the curve starts to raise.

The number of CPUs

0 20 40 60 80 100

T
im

e
 /
 m

in
u

te
s

0

50

100

150

200

250
BAICER N=16 ttpmoon

ParFORM

The number of CPUs

0 20 40 60 80 100

S
p
e
e

d
u
p

0
2
4

6

8

10
12

14

16

18

20
22

BAICER N=16 ttpmoon

ParFORM

Figure 9: Timing and speedup plot for the ParFORM benchmark job
BAICER running of ttpmoon.

is a Hewlett Packard Itanium-2 QsNet interconnected
cluster. This is the only tested cluster which demon-
strates a better behaviour than the SMP computer, how-
ever, it is also significantly more expensive. Fphctl is
a cluster consisting of 32-bit Xeon nodes. This cluster
has been tested both with an Infiniband (FphctlIB)
and a simple Fast Ethernet (FphctlEN) interconnec-
tion. Whereas the latter is not of interest in practice
the former shows a quite reasonable behaviour follow-
ing closely the SMP curve for a smaller number of pro-
cessors. Plejade and Empire are both dual Opteron
clusters. However, Plejade is interconnected using In-
finiBand whereas Empire uses Gigabit Ethernet. Both
clusters show a reasonable behaviour leading to a spee-
dup of about six for ten processors.

We want to mention that the SMP curves shown in
Fig. 10 are based on the shared-memory model men-
tioned above. On the other hand, for the clusters one
has to rely on the MPI library which for our applica-
tions has a significant overhead.

5. TFORM

In the last decade multi-core processing has become a
key technology in the computing industry as system per-

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 7

Figure 10: The speedup for the test program on different clusters in
comparison to the SMP computer (cf. Fig. 8).

formance improvement through increasing clock rates
of single-core processors is hindered by physical limits.
From laptops to supercomputers multi-core processing
is prevalently used and the modern operating systems
allow one to easily use them as SMP computers. Al-
though ParFORM works on such SMP computers, in-
terprocess communications among the master and the
workers via MPI can have a significant overhead when
gigantic expressions are transfered.

This overhead problem can be overcome on SMP ar-
chitectures with the help of another model for the com-
munication. In this approach the master explicitly alloc-
ates shared memory buffers which can be accessed both
by the master and the workers. In these memory seg-
ments the master prepares the chunks for the workers,
they are doing their job and the master collects the res-
ults again from the shared buffers. Thus, copying huge
amounts of data is not necessary any more. The use of
the shared-memory model on SMP machines led to an
increase in the speedup of 20-25% (cf. Fig. 8). This
concept is taken even further in TFORM [12], a multith-
readed version of FORM.

In TFORM the implementation uses the POSIX threads
library, which is available on all modern UNIX systems
and therefore portable. The way the master commu-
nicates with the workers is sketched in Fig. 11. TFORM
starts with one master thread and N worker threads in a
so-called thread pool. The workers sleep until the mas-
ter assigns tasks, and hence do not spend any CPU time.
When the master has some task to be distributed over

Figure 11: Mode of operation for TFORM.

the workers, the master wakes up one of the sleeping
workers and assigns the task to it. Terms in expres-
sions, grouped as chunks for reducing the overheads,
are distributed in this way. After distributing all terms,
the master waits for all the workers to finish the tasks,
and then the master merges the results of the workers
in a final sorting operation. The data transfer among
the threads is done via the shared memory buffers and
by using memory locks for synchronization between the
master and the workers (see Fig. 11).

Due to the model for the communications, some fea-
tures improving the performance are relatively easy to
implement in TFORM, whereas their implementations are
difficult in ParFORM. One of them is a load balancing
system. If there is a single worker that is assigned terms
requiring much CPU time, for the final sorting the mas-
ter may have to wait for this worker even after the other
workers finish their tasks and become idle. To avoid
such inefficiency, after distributing all terms to be pro-
cessed, the master looks for idle workers. If such work-
ers are found, terms are stolen back from the chuncks
of workers that are still busy and redistributed over idle
workers. Experiments with an even more fine-grained
load balancing were unsuccessful, because they resul-
ted in too much overhead.

Another feature in TFORM concerns the parallel sort-
ing. In the final sorting, TFORM used to adopt the simple
model in which the master merges the outputs from all
the workers simultaneously. Therefore it often happens
that the master is busy while the workers are waiting
for the master to accept their next chunks of the res-
ults. It becomes a bottleneck, especially when the num-

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 8

Output

Final sorting

Results of workers

Master

1 2 3 4 5 6 7 8

Sortbots

cancellation

Figure 12: Illustration of the mode of operation of sortbots.

ber of the workers is large. To alleviate this bottleneck,
an improved model of the final sorting has been imple-
mented in TFORM. In this model, each two workers send
their results to a special worker thread, called a sortbot,
which merges the results. Then each two sortbots send
their results to another sortbot. This continues until the
last two sortbots send their results to the master, which
merges the final two results and writes the result to disk.
This is illustrated in Fig. 12. Because also this method
still involves much waiting, a run with N workers will
rarely use more than the CPU time provided by N cores,
even when the computer has many more cores. The total
wall clock execution time improves measurably by this
method, although it does go at the cost of extra memory
needed for the buffers of the sortbots.

Fig. 13 shows up-to-date timing and speedup plots for
ParFORM and TFORM running on ttpmoon.2 Note that
the cluster ttpmoon consists of 12-core nodes which ex-
plains the end point of the TFORM curves where a spee-
dup better than 9 is reached. ParFORM reaches for 12
CPUs, which means 1 master and 11 workers, a spee-
dup of 8.

6. Further developments within CRC/TR 9

6.1. Reduction to master integrals with FIRE

Nowadays the vast majority of calculations of higher
order quantum corrections involve a huge number
(sometimes exceeding several millions) of different
contributing integrals. The standard way to reduce
their number to a manageable amount is based on the

2The ParFORM curves are already shown in Fig. 9.

The number of CPUs

0 20 40 60 80 100

T
im

e
 /
 m

in
u
te

s

0

50

100

150

200

250

ParFORM

TFORM

ParFORM

TFORM

BAICER N=16 ttpmoon

The number of CPUs

0 20 40 60 80 100

S
p
e
e
d
u
p

0
2
4

6

8

10
12

14

16

18

20
22

ParFORM

TFORM

ParFORM

TFORM

BAICER N=16 ttpmoon

Figure 13: Comparison of timing and speedup for ParFORM and
TFORM running on ttpmoon.

so-called “Laporta algorithm” which is described in
Ref. [43]. There are many different implementations
of this algorithm, some of them are publicly available
like AIR [44] or Reduze [45, 46], others are private like
crusher [47] which has been developed in the context
of project A1 of the CRC/TR 9. Within project A2 the
program FIRE [48–51] has been developed.
FIRE stands for Feynman Integral REduction and im-

plements a special version of the Gauss elimination
method to solve the system of linear equations, which
is generated by the application of the integration-by-
parts relations [52], for the master integrals. It uses sev-
eral external programs like Snappy [53] for data com-
pression, KyotoCabinet [54] as database to store data
on disk, Fermat [36] for algebraic simplifications, and
LiteRed [55] to retrieve additional rules among integ-
rals.

The operation of FIRE is divided into two parts: in
a first step the input for the reduction step is prepared
within Mathematica. This includes the generation of
all integration-by-parts relations, the generation of sym-
metry relations, the identification of the sectors of in-

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 9

Figure 14: Integral family with three massive (double lines), three
massless lines and an irreducible numerator (not shown). It it evalu-
ated in forward-scattering kinematics, i.e., there is one external mo-
mentum, p1, flowing through the upper massless line and another, p2,
through the lower massive lines.

dices where integrals vanish, i.e. the so-called bound-
ary conditions, and the preparation of a list of integrals
which shall be reduced. The second step is significantly
more time consuming. In the latest version, FIRE5 [50],
this part is written in C++. Here the systematic reduction
to master integrals is performed. The output is a table
for the list of integrals provided in part one.

To demonstrate the use of FIRE let us, for example,
consider the integral family of Fig. 14 which has three
massive internal lines (with mass m). For the external
momenta we have p4 = p1, p3 = p2 with p2

1 = p2
2 = 0.

Integrals of that type contribute to the next-to-leading
order corrections to double-Higgs boson production. In
fact, the imaginary part, which is a function of x = m2/s
(with s = (p1 + p2)2), is related to the total cross
section via the optical theorem. The input for the
Mathematica part of FIRE contains the following ele-
ments (for a detailed description of the commands we
refer to Ref. [50]):

(* load FIRE: *)

Get["FIRE5.m"];

(* define integral family: *)

Propagators = {m^2 - (v1-v2)^2,

m^2 - (p2-v1)^2, m^2 - (p2-v2)^2,

-v2^2, -v1^2, -(p1+v1)^2, -(p1+v2)^2};

Internal = {v1,v2};

External = {p1,p2};

(* IBP relations: *)

PrepareIBP[];

kinset = {p1^2 -> 0, p2^2 -> 0,

p1*p2 -> s/2};

set1 = Internal;

set2 = Join[Internal,External];

ncount = 0;

startinglist = {};

For[ii=1,ii<=Length[set1],ii++,

For[jj=1,jj<=Length[set2],jj++,

ncount = ncount + 1;

ff[ncount] =

IBP[set1[[ii]], set2[[jj]]

] /. kinset;

startinglist =

Join[startinglist,{ff[ncount]}];

];

];

(* boundary conditions: only contributions

with cuts through at least 2 Higgs

lines are kept: *)

(RESTRICTIONS = { {0,-1,0,0,0,-1,0},

{0,0,-1,0,0,0,-1},{0,0,0,0,0,-1,-1},

{-1,0,0,0,0,0,0},{-1,-1,0,0,0,0,0},

{-1,0,-1,0,0,0,0},{0,-1,-1,0,0,0,0} });

SYMMETRIES = { {1,3,2,5,4,7,6} };

Prepare[];

(* save data to top2l2h1a.start: *)

SaveStart["top2l2h1a"];

The last command writes all generated information into
the so-called “start” file which, together with the list of
integrals, serves as input for the reduction step. The
steering file, top2l2h1a.config, for the latter has the
following form

#threads 4

#variables d,s,m

#start

#problem 1|7|top2l2h1a.start

#integrals top2l2h1a.ind

#output top2l2h1a.tab

where we refer to Ref. [50] for the precise meaning of
the individual commands. The integrals which shall be
reduced can be found in the file top2l2h1a.ind which
might have the form

{{1, {1, 1, 1, 2, 2, 2, 2}},

{1, {1, 1, 1, 1, 1, 1, 2}},

{1, {1, 1, 1, 1, 1, 1, -1}}}

Here the individual entries are lists where the in-
teger in the first entry numbers the family and the
second entry contains seven integers specifying the
indices of the propagators as specified above (see
“Propagators”). The reduction is initiated with the
help of ./FIRE5 -c top2l2h1a. After the job is
completed the reduction table can be found in the
file top2l2h1a.tab which can be read using again a
Mathematica session of FIRE.

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 10

There are several benchmark calculations which have
been performed with the help of FIRE. Among them is
the reduction of all three-loop integrals needed for the
static potential [56–58] which involves eight indices for
massless relativistic propagators and in addition three
indices for static propagators of the form 1/k0. A par-
ticular challenge poses the case for general QCD gauge
parameter ξ which involves about 20 million integrals,
60 times as much as the ξ = 0 case. A further reduction
problem involves four-loop on-shell integrals needed for
the relation between the MS and on-shell quark mass re-
lation or the electron anomalous magnetic moment (see,
e.g., Ref. [59]).

6.2. Numerical evaluation of master integrals with
FIESTA

FIESTA [60–62] stands for Feynman Integral Eval-
uation by a Sector decomposiTion Approach and is a
convenient tool to numerically evaluate Feynman integ-
rals using the method of sector decomposition. The lat-
ter is an algorithmic procedure to extract the ε poles
of a given Feynman integral in the so-called alpha-
representation and provide an integral representation for
the coefficients. After the pioneering work of Binoth
and Heinrich [63, 64] several programs have been pub-
lished where different strategies have been implemen-
ted. Among them are sector decomposition [65],
secdec [64, 66, 67], and FIESTA [60–62].

The basic philosophy of FIESTA is that all kinematic
variables are specified at an early stage which is dif-
ferent from other approaches like, e.g., secdec, where
generic manipulations are performed up to a certain
point and only then numerical values for masses and
momenta are specified.

The use of FIESTA splits into the following two steps:
In a first step the momentum integrals are transformed
into the alpha-representation and the sector decomposi-
tion algorithm is applied. The corresponding manipula-
tions are performed in Mathematica and can be done in
parallel mode. For many applications this step is quite
fast, however, quite often, in particular at higher loop or-
der, huge expressions are generated which require main
memory in the range of hundred Gigabyte. In such cases
it is convenient to store the results into a database [54]
since in general this step has to be performed only once.

The second step is concerned with the numerical in-
tegration. In principle this can also be performed within
Mathematica, which is advantageous for small prob-
lems or during the developing phase of the program.
Complicated problems have to be integrated with the
help of a C++ integrator which is based on the Cuba

library [68, 69]. It uses the expressions stored in the

Figure 15: Sample on-shell Feynman diagram where solid and dashed
lines denote massive and massless lines, respectively.

database during step one which provides several advant-
ages. For example, it is possible to perform various runs
choosing different values for the number of points used
for the integrations. Furthermore, it is possible to copy
the output of step one to a platform which is suitable for
the numerical integration in massive parallel mode.

Let us as an example consider the Feynman dia-
gram in Fig. 15 which enters the four-loop relation
between the MS-on-shell quark mass. Executing the
Mathematica file

Get["FIESTA3.m"];

NumberOfSubkernels=8;

NumberOfLinks=8;

UsingC=True;

UsingQLink=True;

ComplexMode=False;

SDEvaluate[UF[{k1,k2,k3,k4},

{-(k1+q1)^2+m^2,

-(k3+q1)^2+m^2,

-(k1-k2)^2+m^2,

-(k2-k3)^2+m^2,

-(k1-k4)^2+m^2,

-k4^2+m^2,

-k3^2},

{m->1,q1^2->1}],

{1,1,1,1,1,1,1},6]

prepares both the integrand and performs the numer-
ical integration using the corresponding C routines in the
background. The result which is printed on the screen
reads

-276.907674 - 0.625006/ep^4 -

4.937615/ep^3 + (-24.441689 +

0.002*pm69)/ep^2 + (-85.919995 +

0.015937*pm70)/ep + 0.083469*pm71 +

ep*(-864.271585 + 0.468742*pm72) +

ep^2*(-1503.357843 + 2.093833*pm73) +

ep^3*(-6224.681821 + 9.755544*pm74) +

ep^4*(11328.088699 + 40.591518*pm75) +

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 11

epsilon order

sp
ee

d
u
p

64 cores
128 cores
256 cores
512 cores

0

5

10

15

-3 -2 -1 0 1 2 3 4 5 6

Figure 16: Speedup of the calculation of the various ε orders of Feyn-
man diagram given in Fig. 15 using 64 (dotted), 128 (dashed), 256
(dash-dotted) and 512 (solid) cores normalized to the 32-core run.

ep^5*(-18622.607506 + 176.767061*pm76) +

ep^6*(537473.776134 + 713.790523*pm77)

The symbols pm indicate the uncertainty due to
the Monte Carlo integration. In case the option
OnlyPrepare = True; is added to the Mathematica

file the integrand is prepared and stored to disk. Further-
more the command is printed on screen which invokes
the numerical integration from the shell without refer-
ence to Mathematica.

The result from runs performed at the High Perform-
ance Computing Center Stuttgart (HLRS) are shown in
Fig. 16 where the speedup for the individual εn terms
(n = −3, . . . , 6) is shown. The blue (dotted), green
(dashed), red (dash-dotted) and black (solid) curves
(from bottom to top) corresponds to the use of 64, 128,
256 and 512 cores where the results have been normal-
ized to the 32-core run. It is interesting to note that an
ideal speedup is obtained for 64 cores. Also for 128
cores the curve is close to the maximal value of 4. Using
256 instead of 32 cores still shows a quite flat behaviour
with a speedup between 6 and 7. Strong variations in the
speedup are observed for the use of 512 cores. The relat-
ively low value for 1/ε−3 can be explained with the fact
that probably the expression, which shall be integrated,
is too simple. On the other hand, for the (complicated)
expression of the ε6 coefficient it might be that the disk
access becomes the bottle neck.

The main purpose of FIESTA is the fast and con-
venient cross check of analytic calculations. Within
CRC/TR 9 is has been applied in this way to several
problems. An early version of FIESTA has been used to
cross check the master integrals which contribute to the

three-loop static potential [56–58]. Furthermore thir-
teen four-loop on-shell integrals contributing to the MS-
on-shell quark mass relation and to the muon anomalous
magnetic moment, which have been computed analytic-
ally in Ref. [59], have been cross-checked numerically
with FIESTA. Recently also analytic results for master
integrals of double-box topologies in the physical region
have been cross-checked with the help of FIESTA [70].

There are also several projects where FIESTA has
been used to evaluate the most complicated or even the
major part of the master integrals numerically. For ex-
ample, in the first calculation of the three-loop correc-
tions of the quark and gluon form factor [22] (see also
Ref. [71]) one coefficient in the ε expansion of the three
most complicated integrals could not be evaluated ana-
lytically. Thus, the numerical results of FIESTA have
been used which, for all practical purposes, leads to final
results with sufficient precision. The analytic calcula-
tion of the missing master integrals has been performed
in Ref. [72] and perfect agreement with the numerical
result has been found.

For the calculation of the three-loop matching coef-
ficient between QCD and non-relativistic QCD (NR-
QCD) of the vector current [73] even the majority of
the about 100 master integrals have been computed nu-
merically with the help of FIESTA. In such cases it is
important to perform strong cross checks. Among them
are the change of the parametrization of the individual
integrals. Thus, in intermediate steps different expres-
sions are generated which are then integrated numeric-
ally. Furthermore, it is possible to choose a different
integrals basis and evaluate the new integrals again with
the help of FIESTA. The agreement of the final expres-
sion within the numerical uncertainty among the two set
of master integrals serves as a strong checked for the ap-
plicability of FIESTA.

7. Summary

The computer algebra program FORM is designed to
handle huge expressions in a quite effective way. Still,
for some physical applications even FORM would take
several years which make a practical calculation im-
possible.

In the recent years parallel versions of FORM,
ParFORM and TFORM, have been developed and in the
meantime they have become a reliable tools to perform
computer algebra in parallel. ParFORM has demon-
strated a good speedup behaviour both on SMP com-
puters and on different cluster architectures. Further-
more, for the current version of ParFORM the FORM pro-

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 12

grams written for the sequential version need not to be
modified.
TFORM is a parallel version of FORM based on POSIX

threads and thus is bound to run on a single node. How-
ever, there is less overhead connected to the paralleliza-
tion and thus TFORM shows a slightly better performance
than ParFORM.

The main advantage of using a parallel version of
FORM is the reduction of the wall clock time. In fact,
there are a number of calculations where it has been ex-
ploited that a speedup of about 10 can be reached with
16 cores and thus the result was available after about
a month instead of a year. A further advantage of us-
ing TFORM or ParFORM is the fact that the size of the
intermediate results, which have to be handled by the
individual CPU, is smaller since the workload is distrib-
uted among several workers. This advantage becomes
particularly evident when using ParFORM on a cluster.
In that case the intermediate expressions are stored into
files which are located on different nodes.

To obtain an even better speedup behaviour it would
be necessary to improve the slope of the speedup curves
and to push the flattening to higher number of pro-
cessors. One starting point which could help to im-
prove the situation is the sorting procedure. Another
idea might be the combination of ParFORM and TFORM

which could be an ideal tool for a cluster with multi-core
nodes.

In this article we also describe the programs FIRE and
FIESTA. FIRE can be used for the reduction of integrals
belonging to a given integral family to master integrals.
FIESTA, on the other hand is a user-friendly tool to nu-
merically compute the coefficients of the ε expansion of
multi-loop integrals.

Acknowledgements

This work is supported by the Deutsche Forschungs-
gemeinschaft in the Sonderforschungsbereich Transre-
gio 9 “Computational Particle Physics”. We acknow-
ledge the use of the High Performance Computing Cen-
ter Stuttgart (HLRS) where part of the calculations con-
nected to FIESTA have been carried out. In this context
we also acknowledge the help of Peter Marquard.

References

[1] A. C. Hearn, PRINT-71-1192; reduce-algebra.com
[2] M. J. G. Veltman, Schoonschip, CERN Report 1967.
[3] H. Strubbe, Comput. Phys. Commun. 8 (1974) 1; Comput. Phys.

Commun. 18 (1979) 1.
[4] M. J. G. Veltman and D. N. Williams, hep-ph/9306228.

[5] M.I.Levine, ASHMEDAI, Comput. Phys. I (1967) 454; R.
C. Perisho, ASHEMEDAI users guide, U.S. AEC Report No.
COO-3066-44, 1975.

[6] www.symbolics-dks.com/Macsyma-1.htm; for the open-
source version see maxima.sourceforge.net

[7] www.wolfram.com/mathematica

[8] www.maplesoft.com

[9] J. A. M. Vermaseren, math-ph/0010025.
[10] J. Kuipers, T. Ueda, J. A. M. Vermaseren and J. Vollinga,

Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543
[cs.SC]].

[11] M. Tentyukov, D. Fliegner, M. Frank, A. Onischenko, A. Retey,
H. M. Staudenmaier and J. A. M. Vermaseren, cs/0407066 [cs-
sc].

[12] M. Tentyukov and J. A. M. Vermaseren, Comput. Phys. Com-
mun. 181 (2010) 1419 [hep-ph/0702279 [HEP-PH]].

[13] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. D 67
(2003) 074026 [hep-ph/0212299].

[14] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Lett. B 559
(2003) 245 [hep-ph/0212303].

[15] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Nucl. Phys. Proc.
Suppl. 116 (2003) 78.

[16] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Eur. Phys. J. C
33 (2004) S650 [hep-ph/0311137].

[17] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett.
95 (2005) 012003 [hep-ph/0412350].

[18] K. G. Chetyrkin and A. Khodjamirian, Eur. Phys. J. C 46 (2006)
721 [hep-ph/0512295].

[19] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett.
96 (2006) 012003 [hep-ph/0511063].

[20] P. A. Baikov and K. G. Chetyrkin, Phys. Rev. Lett. 97 (2006)
061803 [hep-ph/0604194].

[21] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett.
101 (2008) 012002 [arXiv:0801.1821 [hep-ph]].

[22] P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V. A. Smirnov
and M. Steinhauser, Phys. Rev. Lett. 102 (2009) 212002
[arXiv:0902.3519 [hep-ph]].

[23] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett.
104 (2010) 132004 [arXiv:1001.3606 [hep-ph]].

[24] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn and J. Rittinger, Phys.
Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804 [hep-ph]].

[25] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn and J. Rittinger, JHEP
1207 (2012) 017 [arXiv:1206.1284 [hep-ph]].

[26] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn and J. Rittinger, Phys.
Lett. B 714 (2012) 62 [arXiv:1206.1288 [hep-ph]].

[27] P. A. Baikov, K. G. Chetyrkin and J. H. Khn, arXiv:1402.6611
[hep-ph].

[28] J. Blumlein, D. J. Broadhurst and J. A. M. Vermaseren, Comput.
Phys. Commun. 181 (2010) 582 [arXiv:0907.2557 [math-ph]].

[29] A. Vogt, S. Moch and J. A. M. Vermaseren, PoS LL 2014 (2014)
040 [arXiv:1405.3407 [hep-ph]].

[30] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 889
(2014) 351 [arXiv:1409.5131 [hep-ph]].

[31] D. Fliegner, A. Retey and J. A. M. Vermaseren, hep-
ph/9906426.

[32] D. Fliegner, A. Retey and J. A. M. Vermaseren, hep-
ph/0007221.

[33] S. A. Larin, F. V. Tkachov and J. A. M. Vermaseren, NIKHEF-
H-91-18.

[34] A. Retey and J. A. M. Vermaseren, Nucl. Phys. B 604 (2001)
281 [hep-ph/0007294].

[35] M. Tentyukov and J. A. M. Vermaseren, Comput. Phys. Com-
mun. 176 (2007) 385 [cs/0604052 [cs-sc]].

[36] https://home.bway.net/lewis/

[37] J. A. M. Vermaseren and M. Tentyukov, Nucl. Phys. Proc. Suppl.

M. Steinhauser, T. Ueda, J.A.M. Vermaseren / Nuclear Physics B Proceedings Supplement 00 (2014) 1–13 13

160 (2006) 38.
[38] M. Tentyukov and J. A. M. Vermaseren, PoS ACAT 08 (2008)

119.
[39] M. Tentyukov, J. A. M. Vermaseren and J. Vollinga, PoS ACAT

2010 (2010) 072 [arXiv:1006.2099 [hep-ph]].
[40] M. Tentyukov, H. M. Staudenmaier and J. A. M. Vermaseren,

Nucl. Instrum. Meth. A 559 (2006) 224.
[41] J. Kuipers, T. Ueda and J. A. M. Vermaseren, Comput. Phys.

Commun. (2014) [arXiv:1310.7007 [cs.SC]].
[42] www.mpi-forum.org

[43] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-
ph/0102033].

[44] C. Anastasiou and A. Lazopoulos, JHEP 0407 (2004) 046 [hep-
ph/0404258].

[45] C. Studerus, Comput. Phys. Commun. 181 (2010) 1293
[arXiv:0912.2546 [physics.comp-ph]].

[46] A. von Manteuffel and C. Studerus, arXiv:1201.4330 [hep-ph].
[47] P. Marquard and D. Seidel, unpublished.
[48] A. V. Smirnov, JHEP 0810 (2008) 107 [arXiv:0807.3243 [hep-

ph]].
[49] A. V. Smirnov and V. A. Smirnov, Comput. Phys. Commun. 184

(2013) 2820 [arXiv:1302.5885 [hep-ph]].
[50] A. V. Smirnov, arXiv:1408.2372 [hep-ph].
[51] http://science.sander.su/FIRE.htm

[52] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192 (1981)
159.

[53] https://code.google.com/p/snappy/

[54] http://fallabs.com/kyotocabinet/

[55] http://www.inp.nsk.su/~lee/programs/LiteRed/

[56] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Lett. B
668 (2008) 293 [arXiv:0809.1927 [hep-ph]].

[57] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Rev.
Lett. 104 (2010) 112002 [arXiv:0911.4742 [hep-ph]].

[58] C. Anzai, Y. Kiyo and Y. Sumino, Phys. Rev. Lett. 104 (2010)
112003 [arXiv:0911.4335 [hep-ph]].

[59] R. Lee, P. Marquard, A. V. Smirnov, V. A. Smirnov and
M. Steinhauser, JHEP 1303 (2013) 162 [arXiv:1301.6481 [hep-
ph]].

[60] A. V. Smirnov and M. N. Tentyukov, Comput. Phys. Commun.
180 (2009) 735 [arXiv:0807.4129 [hep-ph]].

[61] A. V. Smirnov, V. A. Smirnov and M. Tentyukov, Comput. Phys.
Commun. 182 (2011) 790 [arXiv:0912.0158 [hep-ph]].

[62] A. V. Smirnov, Comput. Phys. Commun. 185 (2014) 2090
[arXiv:1312.3186 [hep-ph]].

[63] T. Binoth and G. Heinrich, Nucl. Phys. B 680 (2004) 375 [hep-
ph/0305234].

[64] T. Binoth and G. Heinrich, Nucl. Phys. B 693 (2004) 134 [hep-
ph/0402265].

[65] C. Bogner and S. Weinzierl, Comput. Phys. Commun. 178
(2008) 596 [arXiv:0709.4092 [hep-ph]].

[66] S. Borowka, J. Carter and G. Heinrich, Comput. Phys. Commun.
184 (2013) 396 [arXiv:1204.4152 [hep-ph]].

[67] S. Borowka and G. Heinrich, Comput. Phys. Commun. 184
(2013) 2552 [arXiv:1303.1157 [hep-ph]].

[68] T. Hahn, Comput. Phys. Commun. 168 (2005) 78 [hep-
ph/0404043].

[69] http://www.feynarts.de/cuba/

[70] F. Caola, J. M. Henn, K. Melnikov and V. A. Smirnov,
arXiv:1404.5590 [hep-ph].

[71] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli and C. Stu-
derus, JHEP 1006 (2010) 094 [arXiv:1004.3653 [hep-ph]].

[72] R. N. Lee and V. A. Smirnov, JHEP 1102 (2011) 102
[arXiv:1010.1334 [hep-ph]].

[73] P. Marquard, J. H. Piclum, D. Seidel and M. Steinhauser, Phys.
Rev. D 89 (2014) 034027 [arXiv:1401.3004 [hep-ph]].

