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Abstract

We discuss the progress in the calculation of the high-order electroweak radiative corrections to high-energy pro-
cesses.
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1. Introduction

Recently a new wave of interest in the Sudakov
asymptotic regime [1, 2] has risen in connection with
higher-order corrections to electroweak processes at
high energies [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Experimental
and theoretical studies of electroweak interactions have
traditionally explored the range from very low energies,
e.g. through parity violation in atoms, up to energies
comparable to the masses of the W- and Z-bosons at
LEP or the Tevatron. The advent of multi-TeV collid-
ers like the LHC during the present decade or a future
linear electron-positron collider will give access to a
completely new energy domain. Once the characteris-
tic energies

√
s are far larger than the masses of the W-

and Z-bosons, MW,Z , exclusive reactions like electron-
positron (or quark-antiquark) annihilation into a pair of
fermions or gauge bosons will receive virtual correc-
tions enhanced by powers of the large electroweak log-
arithm ln

(
s/M2

W,Z

)
. The logarithmically enhanced one-

and two-loop correction may reach up to 30% and 10%
in the TeV region, respectively, and must be included
in theoretical predictions for the high precision physics
program at the future electron-positron collider. They
can be even larger at the energies accessible for the

LHC and should be taken into account in the analy-
sis of physics at the hadronic collider. The full eval-
uation of electroweak one-loop corrections to fermion
or gauge boson pair production is by now a straightfor-
ward task. Two-loop corrections, however, can be ob-
tained only in the high energy limit. In these Proceed-
ings we review the progress in the study of the dominant
two-loop electroweak corrections to various processes
at high energy. We focus on the method developed in
Refs. [8, 11, 25, 28].

In Sects. 2.1-2.3 we outline the main features of the
approach and give a detailed account of its application
to a fermion vector form factor in the spontaneously
broken gauge theory. The generalization of the method
to more complicated processes of the fermion and gauge
boson production is discussed in Sects. 2.4, 2.5. In
Sect. 3 we describe a method of separating the singular
QED contribution and present numerical results for the
two-loop electroweak corrections to various processes.
Sect. 4 is our conclusion.

2. High energy limit of radiative corrections in spon-
taneously broken gauge theories

2.1. Vector form factor
The vector form factor F determines the fermion

scattering amplitude in an external Abelian gauge field.
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It plays a special role since it is the simplest quan-
tity which includes the complete information about the
universal collinear logarithms. This information is di-
rectly applicable to a process with an arbitrary number
of fermions. The form factor is a function of the Eu-
clidean momentum transfer Q2 = −(p1−p2)2 where p1,2
is the incoming/outgoing fermion momentum. In the
next two sections we consider two characteristic exam-
ples: (i) the S U(2) gauge model with gauge bosons of a
nonzero mass M which emulates the massive gauge bo-
son sector of the standard model and (ii) the U(1)×U(1)
gauge model with two gauge bosons of essentially dif-
ferent masses which emulates the effect of the Z − γ
mass gap. We focus on the asymptotic behavior of the
form factor in the Sudakov limit M/Q � 1 with on-shell
massless fermions, p2

1 = p2
2 = 0.

In the Sudakov limit the coefficients of the pertur-
bative series in the coupling constant can be expanded
in M2/Q2. To compute the leading term of the series
in M2/Q2 we use the expansion by regions approach
[40, 41, 42]. It is based on separating the contribu-
tions of dynamical modes or regions characteristic for
different asymptotic regimes and consists of the follow-
ing steps:

(i) consider various regions of a loop momentum k
and expand, in every region, the integrand in a Tay-
lor series with respect to the parameters considered
small in this region;

(ii) integrate the expanded integrand over the whole in-
tegration domain of the loop momenta;

(iii) put to zero any scaleless integral.

In step (ii) dimensional regularization with d = 4 −
2ε space-time dimensions is used to handle the diver-
gences. In the Sudakov limit under consideration the
following regions are relevant [43, 44, 45]:

hard (h): k ∼ Q ,

1-collinear (1c): k+ ∼ Q, k− ∼ M2/Q , k ∼ M ,

2-collinear (2c): k− ∼ Q, k+ ∼ M2/Q , k ∼ M ,

soft (s): k ∼ M , (1)

where k± = k0 ± k3, k = (k1, k2) and we choose p1,2 =

(Q/2, 0, 0,∓Q/2) so that 2p1 p2 = Q2 = −s. By k ∼ Q,
etc. we mean that every component of k is of order Q.

2.2. S U(2) model with massive gauge boson

Let us apply the method to compute the corrections
to the form factor in the S U(2) model. In one loop the

expansion by regions leads to the following decomposi-
tion

F (1) = F
(1)

h + F (1)
c + F (1)

s , (2)

where the subscript c denotes the contribution of both
collinear regions. For a perturbative function f (α) we
define

f (α) =
∑

n

(
α

4π

)n
f (n) , (3)

and the form factor in the Born approximation is nor-
malized to 1. The hard region contribution, which we
will later need, reads

F
(1)

h =
CF

Q2ε

[
−

2
ε2 −

3
ε

+
π2

6
− 8

+

(
−16 +

π2

4
+

14
3
ζ(3)

)
ε

]
+ O(ε2) , (4)

where CF = (N2 − 1)/(2N) for a S U(N) gauge group,
ζ(3) = 1.202057 . . . is the value of the Riemann’s zeta-
function and all the power-suppressed terms are ne-
glected. For convenience we do not include the standard
factor (4πe−γE (µ2))ε per loop, where γE = 0.577216 . . .
is Euler’s constant. The contributions of all the regions
[11] add up to the well known finite result

F (1) = −CF

(
L2 − 3L +

7
2

+
2π2

3

)
, (5)

where L = ln
(
Q2/M2

)
. A similar decomposition can

be performed in two loops

F (2) = F
(2)

hh + F
(2)

hc + F (2)
cc + . . . (6)

The hard-hard part reads

F
(2)

hh =

(
1
2
F

(1)
h −

β0

ε

)
F

(1)
h +

CF

Q4ε

{[
−

11
6ε3

+

(
−

83
9

+
π2

6

)
1
ε2 +

(
−

4129
108

−
11
36
π2

+13ζ(3)
)

1
ε

]
CA +

[
2

3ε3 +
28
9ε2

+

(
353
27

+
π2

9

)
1
ε

]
TFn f +

[
1

6ε3 +
17

18ε2

+

(
455
108

+
π2

36

)
1
ε

]
TFns +

[
−

3
4

+ π2

−12ζ(3)
]
CF

ε

}
+ O(ε0) , (7)

for α defined in the MS scheme. Here CA = N,
TF = 1/2, β0 = 11CA/3 − 4TFn f /3 − TFns/3 is the
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one-loop beta-function, and n f (ns) is the number of
Dirac fermions (scalars) in the fundamental representa-
tion. With α renormalized at the scale M in the one-loop
result, the total two-loop contribution takes the form

F (2) =
1
2
F (1)2

+ CF

{[
11
9
L +

(
−

233
18

+
π2

3

)]
CA

+

[
−

4
9
L +

38
9

]
TFn f +

[
−

1
9
L +

25
18

]
TFns

L2

+
[
∆

(2)
NA + ∆

(2)
f + ∆(2)

s + ∆
(2)
A

]
L + O(L0) . (8)

The coefficients of the second and higher powers of the
logarithm are insensitive to the infrared structure of the
model as explained below. In contrast, the coefficient
of the linear logarithm does in general depend on the
whole mass spectrum of the model. The purely Abelian
term reads

∆
(2)
A =

(
3
2
− 2π2 + 24ζ(3)

)
C2

F . (9)

Massless Dirac fermions give

∆
(2)
f = −

34
3

CFTFn f . (10)

The non-Abelian contribution depends on the details
of the gauge boson mass generation. For the sponta-
neously broken gauge group S U(2) with a single Higgs
boson of mass MH = M in the fundamental representa-
tion explicit calculation leads to

∆
(2)
NA + ∆(2)

s =
749
16

+
43
24
π2 − 44ζ(3)

+
15
4

√
3π +

13
2

√
3Cl2

(
π

3

)
. (11)

Here Cl2
(
π
3

)
= 1.014942 . . . is the value of the Clausen

function. For comparison, in the (hypothetical) case of
a light Higgs boson MH � M this contribution becomes

∆
(2)
NA + ∆(2)

s =
747
16

+
97
48
π2 − 44ζ(3)

+
33
8

√
3π +

21
4

√
3Cl2

(
π

3

)
. (12)

In the electroweak theory inspired model with the
S U(2)L gauge group, six left-handed fermion doublets
(n f = 3), and MH = M, the result for the two-loop log-
arithmic corrections reads [27]

F (2) =
9

32
L4 −

19
48
L3 −

(
463
48
−

7
8
π2

)
L2

+

(
29 −

11
24
π2 −

61
2
ζ(3) +

15
4

√
3π

+
13
2

√
3Cl2

(
π

3

) )
L + O(L0) . (13)

The asymptotic dependence of the form factor on Q
in the Sudakov limit is governed by the hard evolution
equation [46, 47, 48]

∂

∂ ln Q2F =

∫ Q2

M2

dx
x
γ(α(x)) + ζ(α(Q2))

+ξ(α(M2))

F . (14)

Its solution is

F = F0(α(M2)) exp


∫ Q2

M2

dx
x

[∫ x

M2

dx′

x′
γ(α(x′))

+ζ(α(x)) + ξ(α(M2))


 . (15)

By calculating the functions entering the evolution
equation order by order in α one gets the logarithmic ap-
proximations for the form factor. For example, the LL
approximation includes all the terms of the form αnL2n

and is determined by the one-loop value of γ(α); the
NLL approximation includes all the terms of the form
αnL2n−m with m = 0, 1 and requires the one-loop values
of γ(α), ζ(α) and ξ(α) as well as the one-loop running
of α in γ(α); and so on. The functions entering the evo-
lution equation can in principle be determined by com-
paring Eq. (15) expanded in the coupling constant to the
fixed order result for the form factor. Within the expan-
sion by regions approach the logarithmic contributions
show up as singularities of the different regions. One
can identify the regions relevant for determining a given
parameter of the evolution equation and compute them
separately up to the required accuracy which facilitates
the analysis by far. For example, the anomalous dimen-
sions γ(α) and ζ(α) are known to be mass-independent
and determined by the singularities of the contribution
with all the loop momenta being hard [46, 47, 48]. The
dimensionally regularized hard contribution exponenti-
ates as well [48, 49] with the functions γ(α) and ζ(α)
parameterizing the double and single pole contribution
to the exponent. The one- and two-loop hard contribu-
tion can be written as

F
(1)

h =
1

Q2ε

(
γ(1)

ε2 −
ζ(1)

ε
+ F0

(1)
h

)
+ O(ε) ,

F
(2)

hh =

(
1
2
F

(1)
h −

β0

ε

)
F

(1)
h +

1
Q4ε

{[
1
ε3

γ(1)β0

4

+
1
ε2

(
γ(2)

4
−
ζ(1)β0

2

)
+

1
2ε

(
−ζ(2) + F0

(1)
h β0

) 
 + O(ε0) . (16)
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From Eqs. (4, 7, 16) we find

γ(1) = −2CF ,

ζ(1) = 3CF ,

γ(2) = CF

[(
−

134
9

+
2
3
π2

)
CA +

40
9

TFn f

+
16
9

TFns

]
,

ζ(2) = CF

[(
2545

54
+

11
9
π2 − 26ζ(3)

)
CA

−

(
418
27

+
4
9
π2

)
TFn f −

(
311
54

+
π2

9

)
TFns

+

(
3
2
− 2π2 + 24ζ(3)

)
CF

]
. (17)

At the same time the functions ξ(α) and F0(α) fix the
initial conditions for the evolution equation at Q = M
and do depend on the infrared structure of the model. To
determine the function ξ(α) one has to know the singu-
larities of the collinear region contribution while F0(α)
requires the complete information on the contributions
of all the regions. The total one- and two-loop form
factor can be expressed through the parameters of the
evolution equation as follows

F (1) =
1
2
γ(1)L2 +

(
ξ(1) + ζ(1)

)
L + F(1)

0 .

F (2) =
1
8

(γ(1))2L4 +
1
2

(
ξ(1) + ζ(1) −

1
3
β0

)
γ(1)L3

+
1
2

(
γ(2) +

(
ξ(1) + ζ(1)

)2
− β0ζ

(1) + F(1)
0 γ(1)

)
L2

+
(
ζ(2) + ξ(2) + F(1)

0 (ζ(1) + ξ(1))
)
L + O(L0) . (18)

With the known values of γ(1,2) and ζ(1,2) it is straight-
forward to obtain the result for the remaining functions

ξ(1) = 0 ,

F(1)
0 = −CF

(
7
2

+
2π2

3

)
ξ(2) = ξ(2)

NA + ξ(2)
f + ξ(2)

s + ξ(2)
A , (19)

where the Abelian contribution vanishes ξ(2)
A = 0, the

massless Dirac fermions give

ξ(2)
f =

(
112
27

+
4
9
π2

)
CFTFn f , (20)

and for the spontaneously broken S U(2) model with
MH = M we get

ξ(2)
NA + ξ(2)

s = −
391
18
− 5ζ(3) +

15
4

√
3π

+
13
2

√
3Cl2

(
π

3

)
. (21)

Note that the functions γ(α) and ξ(α) are protected
against the Abelian multiloop corrections by the prop-
erties of the light-cone Wilson loop [47, 48, 50].

The analysis of the evolution equation gives a lot of
insight into the structure of the logarithmic corrections.
For example, Eq. (18) tells us that, up to the NNLL ap-
proximation, the information on the infrared structure
of the model enters through the one-loop coefficients
ξ(1) and F(1)

0 which are insensitive to the details of the
mass generation. Thus one can compute the coefficient
of the two-loop quadratic logarithm with the gauge bo-
son mass introduced by hand [11].

2.3. U(1) × U(1) model with mass gap
Let us now discuss the second example, a U(1)×U(1)

model with λ, α′ and M, α for masses and coupling
constants, respectively. We consider the limit λ � M
and make use of the infrared evolution equation which
governs the dependence of the form factor F (λ,M,Q)
on λ [7]. The virtual corrections become divergent in
the limit λ → 0. According to the Kinoshita-Lee-
Nauenberg theorem [51, 52], these divergences are can-
celled against the ones of the corrections due to the
emission of real light gauge bosons of vanishing energy
and/or collinear to one of the on-shell fermion lines.
The singular behavior of the form factor must be the
same in the full Uα′ (1) × Uα(1) theory and the effec-
tive Uα′ (1) model with only the light gauge boson. For
λ � M � Q the solution of the infrared evolution equa-
tion is given by the Abelian part of the exponent (15)
with M, α replaced by λ, α′. Thus the form factor can
be written in a factorized form

F (λ,M,Q) = F̃(M,Q)Fα′ (λ,Q) + O(λ/M) , (22)

where Fα′ (λ,Q) stands for the Uα′ (1) form factor and
F̃(M,Q) depends both on α and α′, and incorporates all
the logarithms of the form ln

(
Q2/M2

)
. It can be ob-

tained directly by calculating the ratio

F̃(M,Q) =

[
F (λ,M,Q)
Fα′ (λ,Q)

]
λ→0

. (23)

Since the function F̃(M,Q) does not depend on the in-
frared regularization, the ratio in Eq. (23) can be eval-
uated with λ = 0 using dimensional regularization for
the infrared divergences. The resulting two-parameter
perturbative expansion is

F̃(M,Q) =
∑
n,m

α′nαm

(4π)n+m F̃(n,m) (24)

where

F̃(0,0) = 1, F̃(n,0) = 0, F̃(0,m) = F (m) , (25)
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and the two-loop interference term reads [25]

F̃(1,1) =
(
3 − 4π2 + 48ζ(3)

)
L + O(L0) . (26)

In the equal mass case, λ = M, we have an addi-
tional reparameterization symmetry, and the form fac-
tor is determined by Eq. (15) with the effective coupling
ᾱ = α′ + α so that F (M,M,Q) = Fᾱ(M,Q). We can
now write down the matching relation

F (M,M,Q) = C(M,Q)F̃(M,Q)Fα′ (M,Q) , (27)

where the matching coefficient C(M,Q) represents
the effect of the power-suppressed terms neglected
in Eq. (22). By combining the explicit results for
Fα′ (M,Q) and F̃(M,Q) the matching coefficient was
found to be C(M,Q) = 1 + O(α′αL0) [25]. In two-
loops it does not contain logarithmic terms, and up
to the N3LL accuracy, the product F̃(M,Q)Fα′ (λ,Q)
continuously approaches F (M,M,Q) as λ goes to M.
Therefore, to get all the logarithms of the heavy gauge
boson mass in two-loop approximation for the theory
with mass gap, it is sufficient to divide the form fac-
tor Fᾱ(M,Q) of the symmetric phase by the form fac-
tor Fα′ (λ,Q) of the effective Uα′ (1) theory taken at the
symmetric point λ = M. Thus we have reduced the cal-
culation in the theory with mass gap to the one in the
symmetric theory with a single mass parameter. The
logarithmic terms in the expansion of F̃(M,Q) expo-
nentiate by construction and one can describe the ex-
ponent with a set of functions γ̃(α, α′), ζ̃(α, α′), ξ̃(α, α′)
and F̃0(α, α′) in analogy with Eq. (15). The matching
procedure can naturally be formulated in terms of these
functions. For the mass-independent functions we have
the all order relation

γ̃(α′, α) = γ(ᾱ) − γ(α′) ,
ζ̃(α′, α) = ζ(ᾱ) − ζ(α′) . (28)

In two loops we obtain by explicit calculation

ξ̃(α′, α) = ξ(ᾱ) = 0 , (29)

which holds in higher orders for the Abelian model due
to the nonrenormalization properties discussed in the
previous section. Thus, the only nontrivial two-loop
matching is for the coefficient F̃(1,1)

0 due to the non-
logarithmic contribution to C(M,Q) which is beyond
the accuracy of our analysis.

Note that the absence of the two-loop linear-
logarithmic term in C(M,Q) is an exceptional feature
of the Abelian corrections. The general analysis of the
evolution equation [11] shows that the terms neglected

in Eq. (22) contribute starting from the N3LL approxi-
mation. Indeed, the solution of the hard evolution equa-
tion for F(λ,M,Q) which determines its dependence on
Q is of the form (15) with the infrared sensitive quanti-
ties F0 and ξ being functions of the ratio λ/M. A non-
trivial dependence on the mass ratio in general emerges
first through the two-loop coefficient ξ(2) due to the
interference diagrams with both massive and massless
gauge bosons. The matching is necessary to take care
of the difference ξ(2)|λ/M=1 , ξ

(2)|λ/M=0. Thus, for a non-
Abelian theory with the mass gap of the standard model
type, i.e. with interaction between the heavy and light
gauge bosons, the matching becomes nontrivial already
in N3LL approximation.

2.4. Four-fermion process

We consider the four-fermion scattering at fixed an-
gles in the limit where all the kinematical invariants
are of the same order and are far larger than the gauge
boson mass, |s| ∼ |t| ∼ |u| � M2. The analysis of
the four-fermion amplitude is complicated by the ad-
ditional kinematical variable and the presence of dif-
ferent isospin and Lorentz structures. The collinear
divergences in the hard part of the virtual corrections
and the corresponding collinear logarithms are known
to factorize. They are responsible, in particular, for
the double logarithmic contribution and depend only on
the properties of the external on-shell particles but not
on the specific process [46, 47, 48, 53, 54, 55]. This
fact is especially clear if a physical (Coulomb or ax-
ial) gauge is used for the calculation. In this gauge
the collinear divergences are present only in the self en-
ergy insertions to the external particles. Thus, for each
fermion-antifermion pair of the four-fermion amplitude
the collinear logarithms are the same as for the form fac-
tor F discussed in the previous section. Let us denote
by Ã the amplitude with the collinear logarithms fac-
tored out. For convenience we separate from Ã all the
corrections entering Eq. (15) so that

A =
ig2

s
F 2Ã . (30)

The resulting amplitude Ã contains the logarithms of
the soft nature corresponding to the soft divergences
of the hard region contribution and the renormalization
group logarithms. It can be represented as a vector in
the color/chiral basis and satisfies the following evolu-
tion equation [55, 56, 57]:

∂

∂ ln Q2 Ã = χ(α(Q2))Ã , (31)
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Figure 1: Logarithmic contributions to σ(e+e− → qq̄) in % to the
Born approximation: the two-loop LL (ln4(s/M2), short-dashed line),
NLL (ln3(s/M2), long-dashed line), NNLL (ln2(s/M2), dot-dashed
line), and N3LL (ln1(s/M2), solid line) terms [28].

where χ(α) is the matrix of the soft anomalous dimen-
sions. The solution of Eq. (31) is given by the path-
ordered exponent

Ã = Pexp

∫ Q2

M2

dx
x
χ(α(x))

A0(α(M2)) , (32)

where Ã0(α) determines the initial conditions for the
evolution equation at Q = M. The matrix of the soft
anomalous dimensions is determined by the coefficients
of the single pole of the hard region contribution to the
exponent (32).

Let us again discuss the standard model inspired ex-
ample considered in the previous section. With the re-
sult for the amplitudes it is straightforward to compute
the two-loop corrections to the total cross section of the
four-fermion annihilation process. For the annihilation
process f f̄ → f ′ f̄ ′ one has to make the analytical con-
tinuation of the above result to the Minkowskian region
of negative Q2 = −s according to the s+ i0 prescription.
The above approximation is formally not valid for the
small angle region θ < M/

√
s, which, however, gives

only a power-suppressed contribution to the total cross
section. For the S U(2)L model we obtain [27]

σ(2) =

[
9
2
L4(s) −

449
6
L3(s) +

(
4855
18

+
37
3
π2

)
L2(s)

+

(
48049

216
−

1679
18

π2 − 122ζ(3) + 15
√

3π

+26
√

3Cl2
(
π

3

) )
L(s)

]
σB , (33)

and

σ(2) =

[
9
2
L4(s) −

125
6
L3(s) −

(
799
9
−

37
3
π2

)
L2(s)

ll
–
→QQ

–

ll
–
→qq

_

ll
–
→l'l

–
'
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Figure 2: The total two-loop logarithmic corrections to σ(e+e− →
QQ̄) (dashed line), σ(e+e− → qq̄) (dot-dashed line) and R(e+e− →
µ+µ−) (solid line) in % to the Born approximation [28].

+

(
38005

216
−

383
18

π2 − 122ζ(3) + 15
√

3π

+26
√

3Cl2
(
π

3

) )
L(s)

]
σB , (34)

for the initial and final state fermions of the same or
opposite isospin, respectively. HereσB is the Born cross
section with the MS coupling constant renormalized at
the scale

√
s and L(s) = ln(s/M2).

2.5. Gauge boson production

In this section we consider the production of a pair
of massive gauge bosons in annihilation of the fermion-
antifermion pair. To be specific we focus on the process
with a given initial and final isospin states correspond-
ing to e+e− → W+W−. Due to helicity conservation
a pair of either transverse or longitudinal gauge bosons
can be produced in the high energy limit. The transverse
gauge bosons behave like vector particles in the adjoint
representation while the longitudinal gauge bosons, as
a consequence of the equivalence theorem, behave like
scalar particles in the fundamental representation. The
structure of the Sudakov logarithms in these cases is sig-
nificantly different and we consider them separately.

The transverse gauge bosons are the true vector par-
ticles. The Born amplitude in this case is given by the t-
channel fermion exchange diagrams and the Born cross
section is peaked in the forward direction. In the S UL(2)
model introduced in Sect. 2.1 with MH = M and twelve
left-handed fermion doublets we have the two-loop log-
arithmic corrections up to the NNLL terms [31, 38]

dσ(2)

dσB
=

121
8
L4(s)

+

[(
44 −

22x−
x+

)
ln(x−) − 22 ln(x+) −

341
18

]
L3(s)



J.H. Kühn, A.A. Penin / Nuclear Physics B Proceedings Supplement 00 (2015) 1–10 7

LL

NLL

N2LL

total

θo

-10

-8

-6

-4

-2

0

2

4

6

8

30 40 50 60 70 80 90 100 110 120 130

Figure 3: The two-loop logarithmic corrections to dσ(e+e− →
W+

T W̄−T )/dΩ in % to the Born approximation: the two-loop LL
(ln4(s/M2), short-dashed line), NLL (ln3(s/M2), long-dashed line),
and NNLL (ln2(s/M2), dot-dashed line) terms, at

√
s = 1 TeV as

functions of the production angle [31, 38].

+

[(
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4x2
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+

−
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+
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)
ln2(x−)

−
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+
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3
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−
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+
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3
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55x+
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+

209π2

36

+
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6
√

3
−
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24

+ 4π2 x2
− − x2

+

x2
+

]
L2(s) , (35)

where x± = (1 ± cos θ)/2, θ is the production angle and
the coupling constant in the Born cross section is renor-
malized at the scale M. Note that in contrast to the four-
fermion processes, the cross section of the gauge boson
production depends on the Higgs boson mass already in
the NNLL approximation.

The equivalence theorem relates the amplitude of the
longitudinal gauge boson production e+e− → W+

L W−L to
the production of the Goldstone bosons e+e− → φ+φ−.
The Born amplitude is now given by the s-channel anni-
hilation diagram and the Born cross section has a max-
imum at θ = 90o. If we neglect the quark masses the
result for the two-loop corrections reads [31]

dσ(2)

dσB
=

9
2
L2(s) +

[
30 ln(x−) − 6 ln(x+) −

85
3

]
L3(s)

+

[(
38 +

15
2x+

)
ln2(x−) +

(
2 −

3
2x−

)
ln2(x+)

−8 ln(x−) ln(x+) −
535
6

ln(x−) +
107

6
ln(x+)

+9π2 −
32π
√

3
+

229
4

]
L2(s) , (36)
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Figure 4: The same as Fig. 3 but for dσ(e+e− → W+
L W̄−L )/dΩ [31].

where the coupling constant in σB is renormalized at
√

s.
In the case of longitudinal polarization the large

Yukawa coupling of the third generation quarks to the
scalar (Higgs and Goldstone) bosons results in specific
logarithmic corrections proportional to m2

t /M
2
W . The

high energy evolution of the form factors in a the-
ory with Yukawa interaction is completely analogous
to the one of φ3 scalar theory in six dimensions [58].
The structure of factorization and evolution equations is
much simpler than in a gauge theory because Yukawa
interaction itself does not contribute to the anomalous
dimension γ(α) and results only in single logarithmic
corrections completely determined by the ultraviolet
field renormalization of the external on-shell particles.
These corrections can be taken into account through the
modification of the evolution equations for the form fac-
tors. The analysis is straightforward but complicated
because the Yukawa interaction mixes evolution of the
quark and scalar boson form factors and in general does
not commute with the S U(2) and hypercharge cou-
plings. However, due to the factorization of the double
Sudakov logarithms, the Yukawa enhanced contribution
to NLL approximation is given simply by the product of
the one-loop Yukawa corrections and the double loga-
rithmic exponent as observed in Ref. [15]. The structure
of the NNLL contribution is much more complicated.
The two-loop NNLL Yukawa enhanced contribution to
the cross section in the S U(2) model reads [31]

dσ(2)

dσB

∣∣∣∣∣∣NNLL

Yuk
=

−3
4

m4
t

M4
W

+
m2

t

M2
W

(30 ln(x−)

−6 ln(x+) −
45
4

)]
L2(s) . (37)
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Figure 5: Two-loop logarithmic contributions to the differential
Bhabha cross sectionin % to the Born approximation as functions of
the scattering angle for

√
s = 1 TeV The shaded area corresponds to

the region where the Sudakov approximation is not reliable [39].

3. Two-loop electroweak corrections

The calculation of the two-loop electroweak correc-
tions even in the high energy limit is a challenging the-
oretical problem at the limit of available computational
techniques. It is complicated in particular by the pres-
ence of the mass gap and mixing in the gauge sector.
Below we describe the approach of Ref. [25] which re-
duces the analysis of the dominant two-loop logarithmic
electroweak corrections to a problem with a single mass
parameter which has been solved in the previous sec-
tion.

3.1. Separating QED infrared logarithms

The main difference between the analysis of the elec-
troweak standard model with the spontaneously broken
S UL(2)×U(1) gauge group and the treatment of the pure
S UL(2) case considered above is the presence of the
massless photon which results in infrared divergences
of fully exclusive cross sections. We regularize these
divergences by giving the photon a small mass λ. The
dependence of the virtual corrections on λ in the limit
λ2 � M2 � Q2 is governed by the QED infrared evolu-
tion equation. For example, for the f f̄ → f ′ f̄ ′ process
it is given by the factor

U = U0(αe(Q2)) exp
{
αe(λ2)

4π

[
−

(
Q2

f + Q2
f ′
)

ln2
(

Q2

λ2

)
+

(
3
(
Q2

f + Q2
f ′
)

+ 4 ln
(

x+

x−

)
Q f ′Q f

)
ln

(
Q2

λ2

)
+ O(α2

e)
]}
,

(38)

where αe is the MS QED coupling constant and Q f is
the electric charge of the fermion.
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Figure 6: Two-loop logarithmic contributions to the differential
Bhabha cross section in % to the Born approximation as functions
of the center-of-mass energy for θ = 50◦ [39].

Our goal now is to separate the above infrared
divergent QED contribution from the total two-loop
corrections to get the pure electroweak logarithms
ln(Q2/M2

W,Z). Within the evolution equation approach
[11] it has been found that the electroweak and QED
logarithms up to the NNLL approximation can be disen-
tangled by means of the following two-step procedure:

(i) the corrections are evaluated using the fields of
the unbroken symmetry phase with all the gauge
bosons of the same mass M ≈ MZ,W , i.e. without
mass gap;

(ii) the QED contribution (38) with λ = M is factor-
ized leaving the pure electroweak logarithms.

This reduces the calculation of the two-loop elec-
troweak logarithms up to the quadratic term to a prob-
lem with a single mass parameter. Then the effect of the
Z −W boson mass splitting can systematically be taken
into account within an expansion around the equal mass
approximation [25]. In general the above two-step pro-
cedure is not valid in the N3LL approximation which is
sensitive to fine details of the gauge boson mass gen-
eration. For the exact calculation of the coefficient of
the two-loop linear-logarithmic term one has to use the
true mass eigenstates of the standard model. The eval-
uation of the corrections in this case becomes a very
complicated multiscale problem. The analysis, how-
ever, is drastically simplified in a model with a Higgs
boson of zero hypercharge. In this model the mixing is
absent and the above two-step procedure can be applied
to disentangle all the two-loop logarithms of the S UL(2)
gauge boson mass from the infrared logarithms associ-
ated with the massless hypercharge gauge boson (see
the discussion below). In the standard model the mix-
ing of the gauge bosons results in a linear-logarithmic
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contribution which is not accounted for in this approx-
imation. It is, however, suppressed by the small fac-
tor sin2 θW ≈ 0.2. Therefore, the approximation gives
an estimate of the coefficient in front of the linear elec-
troweak logarithm with 20% accuracy. As we will see, a
20% error in the coefficient in front of the two-loop lin-
ear electroweak logarithm leads to an uncertainty com-
parable to the nonlogarithmic contribution and is practi-
cally negligible. If we also neglect the difference be-
tween MH and MZ,W , the calculation involves a sin-
gle mass parameter at every step and the results of the
previous sections can directly be applied to the isospin
S U(2)L gauge group with the coupling g and the hyper-
charge U(1) gauge group with the coupling tan θWg.

3.2. Numerical results

In this section we present the numerical results for the
dominant two-loop electroweak corrections to a num-
ber of benchmark processes at a future electron-positron
collider obtained in Refs. [28, 31, 39]. In Fig. 1 the
values of different logarithmic contributions to the to-
tal cross section of the quark-antiquark pair production
cross section σ(e+e− → qq̄) for q = d, s, b are plotted
separately as functions of s. The total two-loop loga-
rithmically enhanced corrections to σ(e+e− → µ+µ−),
σ(e+e− → qq̄), and σ(e+e− → QQ̄), where Q = u, c,
are given in Fig. 2. The two-loop logarithmic correc-
tions up to the NNLL order are plotted in Figs. 3, 4 for
the differential cross sections of the transverse and lon-
gitudinal W-boson pair production for

√
s = 1 TeV as

functions of the production angle. The energy and angu-
lar dependence of the two-loop logarithmic corrections
to the differential cross section of the electron-positron
Bhabha scattering are presented in Figs. 5, 6.

4. Summary

We have reviewed a method [8, 11, 25, 28] of cal-
culation of the dominant high-order electroweak radia-
tive corrections to processes at the energies above the
electroweak scale. The method relies on the knowl-
edge of the general infrared structure of gauge theories.
It turns out to be very useful not only for the analysis
of the logarithmic corrections in spontaneously broken
gauge models, but also for the high-order calculations
in QED with massive fermions. In particular, the in-
frared matching procedure based on the same idea has
been instrumental for the calculation of the two-loop
photonic and heavy flavor corrections to the Bhabha
scattering [59, 60, 61, 62]. Though in these Proceed-
ings we focus mainly on the applications relevant for a

future high-energy electron-positron collider, many re-
sults have been obtained also for the physics at the LHC
[29, 32, 38]. Comparison to the one-loop results which
retain the full mass dependence [63, 64] confirm that
the logarithmic approximation works very well in the
region where the electroweak corrections become im-
portant.
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