NLO predictions for Dark Matter production at the LHC

Mathieu PELLEN

Institute for Theoretical Physics and Astrophysics, University Würzburg

[arXiv:1508.05327] Eur.Phys.J. C75 (2015) 10, 482

In collaboration with: M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari

"New Physics at the LHC" meeting Bonn, Germany

28th October 2015

- Importance of NLO corrections
- Other features

The models Importance of NLO corrections Other features Conclusion

Outlook

2 The models

Importance of NLO corrections

Other features

5 Conclusion

The models Importance of NLO corrections Other features Conclusion

Dark Matter: Evidences and Theories Review

Mathieu PELLEN

The models Importance of NLO corrections Other features Conclusion

Dark Matter: Evidences and Theories Review

Evidences for Dark Matter

[Rubin, Ford, Kent, 1970]

[Clowe, Gonzalez, Markevitch, astro-ph/0312273]

And more: CMB, weak lensing, large scale structure ... \rightarrow Weakly Interacting Massive Particles (WIMPs)

The models Importance of NLO corrections Other features Conclusion

Dark Matter: Evidences and Theories Review

Ways to find Dark Matter

- Indirect detection (AMS-02, PAMELA, ...)
- Direct detection (LUX, Xenon, ...)
- Collider search (LHC)

Dark Matter: Evidences and Theories Review

What theory for Dark Matter?

 \bullet Plethora of models \rightarrow Need for model independent tools

Dark Matter: Evidences and Theories Review

What theory for Dark Matter?

 \bullet Plethora of models \rightarrow Need for model independent tools

 \rightarrow Contact interaction / Effective Field Theory (EFT)

Dark Matter: Evidences and Theories Review

What theory for Dark Matter?

 \bullet Plethora of models \rightarrow Need for model independent tools

 \rightarrow Contact interaction / Effective Field Theory (EFT)

• The mediator is integrated out $\frac{1}{Q_{tr}^2 - M^2} = -\frac{1}{M^2} \left(1 + \frac{Q_{tr}^2}{M^2} + O\left(\frac{Q_{tr}^4}{M^4}\right) \right)$ $\rightarrow \mathcal{O}_S = \frac{1}{\Lambda^2} \left(\chi \overline{\chi} \right) (q\overline{q}) \text{ with } \frac{1}{\Lambda^2} = \frac{g_{\chi} g_q}{M^2}$

Dark Matter: Evidences and Theories Review

What theory for Dark Matter?

 $\bullet\,$ Plethora of models \to Need for model independent tools

 \rightarrow Contact interaction / Effective Field Theory (EFT)

• The mediator is integrated out $\frac{1}{Q_{tr}^2 - M^2} = -\frac{1}{M^2} \left(1 + \frac{Q_{tr}^2}{M^2} + O\left(\frac{Q_{tr}^4}{M^4}\right) \right)$ $\rightarrow \mathcal{O}_S = \frac{1}{\Lambda^2} \left(\chi \overline{\chi} \right) (q\overline{q}) \text{ with } \frac{1}{\Lambda^2} = \frac{g_{\chi} g_q}{M^2}$

• Problematic at energies probed by the LHC [Busoni et al., 1402.1275]

Dark Matter: Evidences and Theories Review

What theory for Dark Matter?

→ Simplified models:

- Defined by the mediator and the dark matter
 - S-channel or t-channel
 - Mediator: scalar or vector
 - Dark matter: Dirac, Majorana fermion or scalars

Dark Matter: Evidences and Theories Review

What theory for Dark Matter?

→ Simplified models:

- Defined by the mediator and the dark matter
 - S-channel or t-channel
 - Mediator: scalar or vector
 - Dark matter: Dirac, Majorana fermion or scalars
- 4 parameters (2 couplings, 2 masses)
 - \rightarrow Possible studies of collider and direct/inderect constraints

Dark Matter: Evidences and Theories Review

What theory for Dark Matter?

→ Simplified models:

- Defined by the mediator and the dark matter
 - S-channel or t-channel
 - Mediator: scalar or vector
 - Dark matter: Dirac, Majorana fermion or scalars
- 4 parameters (2 couplings, 2 masses)
 - \rightarrow Possible studies of collider and direct/inderect constraints

Dark Matter: Evidences and Theories Review

Review - Searches

Detection of dark matter at the LHC:

 \rightarrow MET + mono X (= jet, photon, W, Z, h), di-jets or top pair

Dark Matter: Evidences and Theories Review

Review - Searches

Detection of dark matter at the LHC:

 \rightarrow MET + mono X (= jet, photon, W, Z, h), di-jets or top pair

Studies in simplified model:

- Mono-jet + MET [Buchmueller et al., 1308.6799, 1407.8257], [Heisig et al., 1509.07867]
- Di-jet + MET [Chala et al., 1503.05916]
- Top pair + MET [Haisch and Re, 1503.0069]
- \rightarrow Dark matter Forum: [Abercrombie et al., 1507.00966]

Mathieu PELLEN

NLO predictions for Dark Matter production at the LHC

Dark Matter: Evidences and Theories Review

Review - Searches

Detection of dark matter at the LHC:

 \rightarrow MET + mono X (= jet, photon, W, Z, h), di-jets or top pair

Studies in simplified model:

- Mono-jet + MET [Buchmueller et al., 1308.6799, 1407.8257], [Heisig et al., 1509.07867]
- Di-jet + MET [Chala et al., 1503.05916]
- Top pair + MET [Haisch and Re, 1503.0069]
- → Dark matter Forum: [Abercrombie et al., 1507.00966]

Mathieu PELLEN

NLO predictions for Dark Matter production at the LHC

The models Importance of NLO corrections Other features Conclusion

Dark Matter: Evidences and Theories Review

Review - Computations

Precise predictions:

- NLO QCD correction to dark matter production ...
 - ... in association with gauge boson [Wang et al., 1107.2048], [Huang et al., 1210.0195], [Mao et al., 1403.2142], [Neubert et al., 1509.05785]
 - ... for mono-jet for EFT [Fox and Williams, 1211.6390],
- Matched to parton shower [Haisch et al., 1310.4491]
- Loop induced [Haisch et al., 1208.4605], [Harris et al., 1411.0535], [Buckley et al., 1410.6497], [Mattelaer and Vryonidou, 1508.00564]

The models Importance of NLO corrections Other features Conclusion

Dark Matter: Evidences and Theories Review

Review - Computations

Precise predictions:

- NLO QCD correction to dark matter production ...
 - ... in association with gauge boson [Wang et al., 1107.2048], [Huang et al., 1210.0195], [Mao et al., 1403.2142], [Neubert et al., 1509.05785]
 - ... for mono-jet for EFT [Fox and Williams, 1211.6390],
- Matched to parton shower [Haisch et al., 1310.4491]
- Loop induced [Haisch et al., 1208.4605], [Harris et al., 1411.0535], [Buckley et al., 1410.6497], [Mattelaer and Vryonidou, 1508.00564]

→ Our work: [Backović, Krämer, Maltoni, Martini, Mawatari, MP; 1508.05327]

Fully automatised simplified model at NLO accuracy ...

- ... for arbitrary processes (also loop induced) ...
- ... matched to parton shower

Vector mediator Vector mediator Method of computation

Outlook

Importance of NLO corrections

Other features

5 Conclusion

Vector mediator Vector mediator Method of computation

• Vector mediator (Y_1)

$$\begin{split} \mathcal{L}_{X_D}^{Y_1} &= \bar{X}_D \gamma_\mu (g_{X_D}^V + g_{X_D}^A \gamma_5) X_D \; Y_1^\mu \\ \mathcal{L}_{\mathrm{SM}}^{Y_1} &= \sum_{i,j} \left[\bar{q}_i \gamma_\mu (g_{q_{ij}}^V + g_{q_{ij}}^A \gamma_5) q_j \right] Y_1^\mu \end{split}$$

 \rightarrow Preferred signature: jet + MET

Vector mediator Vector mediator Method of computation

• Scalar mediator (Y_0)

$$\begin{aligned} \mathcal{L}_{X_D}^{Y_0} &= \bar{X_D}(g_{X_D}^S + ig_{X_D}^P \gamma_5) X_D Y_0 \\ \mathcal{L}_{SM}^{Y_0} &= \sum_{i,j} \left[\bar{q}_i \frac{y_{ij}^q}{\sqrt{2}} (g_{q_{ij}}^S + ig_{q_{ij}}^P \gamma_5) q_j \right] Y_0 \end{aligned}$$

 \rightarrow Preferred signature: top pair + MET

Vector mediator Vector mediator Method of computation

Method of computation

 \bullet Implementation of the model in $\rm FEYNRULES$ [Alloul et al., 1310.1921]

Vector mediator Vector mediator Method of computation

Method of computation

- \bullet Implementation of the model in $\rm FEYNRULES$ [Alloul et al., 1310.1921]
- Computation of the R_2 terms and UV-counterterms in NLOCT [Degrande, 1406.3030] / FERYNARTS [Hahn, hep-ph/0012260]

Vector mediator Vector mediator Method of computation

Method of computation

- \bullet Implementation of the model in $\rm FEYNRULES$ [Alloul et al., 1310.1921]
- Computation of the R_2 terms and UV-counterterms in NLOCT [Degrande, 1406.3030] / FERYNARTS [Hahn, hep-ph/0012260]

\rightarrow UFO model publicly available

http://feynrules.irmp.ucl.ac.be/wiki/DMsimp

Vector mediator Vector mediator Method of computation

Method of computation

- \bullet Implementation of the model in $\rm FEYNRULES$ [Alloul et al., 1310.1921]
- Computation of the R_2 terms and UV-counterterms in NLOCT [Degrande, 1406.3030] / FERYNARTS [Hahn, hep-ph/0012260]

\rightarrow UFO model publicly available

http://feynrules.irmp.ucl.ac.be/wiki/DMsimp

• Calculation of arbitrary (also loop-induced) processes in MADGRAPH5_AMC@NLO [Alwall et al., 1405.0301]

Vector mediator Vector mediator Method of computation

Method of computation

- Implementation of the model in FEYNRULES [Alloul et al., 1310.1921]
- Computation of the R_2 terms and UV-counterterms in NLOCT [Degrande, 1406.3030] / FERYNARTS [Hahn, hep-ph/0012260]

\rightarrow UFO model publicly available

http://feynrules.irmp.ucl.ac.be/wiki/DMsimp

- Calculation of arbitrary (also loop-induced) processes in MADGRAPH5_AMC@NLO [Alwall et al., 1405.0301]
- Can be used in MICROMEGAS [Belanger et al., 0803.2360] and MADDM [Backović et al., 1505.04190]

/ector mediator Scalar mediator

Outlook

2 The models

3 Importance of NLO corrections

Other features

5 Conclusion

Vector mediator Scalar mediator

(pure vector mediator, $\mathsf{MET}>150~\mathsf{GeV})$

 \rightarrow Significant shape distortion

Mathieu PELLEN

Vector mediator Scalar mediator

Mathieu PELLEN

NLO predictions for Dark Matter production at the LHC

Vector mediator Scalar mediator

(pure scalar mediator, no cut)

 \rightarrow No significant shape distortion ...

... but huge reduction of the theoretical uncertainty

Mathieu PELLEN

NLO predictions for Dark Matter production at the LHC

Signal over background Discriminating different couplings

Outlook

2 The models

Importance of NLO corrections

Other features

5 Conclusion

Signal over background Discriminating different couplings

 \rightarrow Possibility to distinguish signal from background

Mathieu PELLEN

Signal over background Discriminating different couplings

(no cut)

 \rightarrow Different shape for different coupling structure

Mathieu PELLEN

Importance of NLO corrections

Other features

Summary

- Simplified models are key at the LHC
- NLO QCD effects are important
- Possibility of systematic studies in an uniform framework

Precise predictions for the Standard Model background and the Dark Matter signal are required

NLO model publicly available at: http://feynrules.irmp.ucl.ac.be/wiki/DMsimp