Simplified Models for Co-annihilating Dark Matter

Michael J. Baker

with

Joachim Brod, Sonia El Hedri, Anna Kaminska, Joachim Kopp, Jia Liu, Andrea Thamm, Maikel de Vries, Xiao-Ping Wang, Felix Yu, José Zurita

arXiv:1510.03434

JGU Mainz

ABHM Research Unit: New Physics at the LHC - Bonn - 28 October 2015

Phenomenology

Motivation •000

Dark Matter

Begeman, Broeils & Sanders, 1991

Motivation

Dark Matter

Motivation ●000

Dark Matter

Viel, Becker, Bolton & Haehnelt, 2013

Motivation ●000

Dark Matter

$$\Omega_{\rm nbm} h^2 = 0.1198 \pm 0.0026$$

Phenomenology 00000000

Theoretical Framework

Abdallah et al., 1506.03116

Phenomenology 00000000

Theoretical Framework

Abdallah et al., 1506.03116

Theoretical Framework

Abdallah et al., 1506.03116

Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Profumo *et al.* 1307.6277,
 - De Simone et al. 1402.6287,
 - Abdallah *et al.* 1506.03116, ...
- Various tensions, e.g., between relic density and direct/indirect constraints
- Coannihilating models can relieve these tensions

Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Profumo *et al.* 1307.6277,
 - De Simone et al. 1402.6287,
 - Abdallah et al. 1506.03116, ...
- Various tensions, e.g., between relic density and direct/indirect constraints
- Coannihilating models can relieve these tensions

Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Profumo *et al.* 1307.6277,
 - De Simone et al. 1402.6287,
 - Abdallah *et al.* 1506.03116, ...
- Various tensions, e.g., between relic density and direct/indirect constraints
- Coannihilating models can relieve these tensions

Our Goal

A complete classification of simplified coannihilation models

Our Goal

A complete classification of simplified coannihilation models

The Coannihilation Codex

Our Goal

A complete classification of simplified coannihilation models

The Coannihilation Codex

This allows us to

- Study connections between experimental probes
- Discuss general phenomenology of models
- Identify lesser studied scenarios
- In the event of a signal, gives a framework for the inverse problem

Assumptions

To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1

Assumptions

To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1

Phenomenology 0000000

Coannihilation Diagrams

Classification Procedure

• Work in unbroken $SU(2)_L \times U(1)_Y$

- Given SM field content, iterate over SM₁ and SM₂ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - \mathbb{Z}_2 parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms

Classification Procedure

- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM₁ and SM₂ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - ℤ₂ parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms

Classification Procedure

- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM₁ and SM₂ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - ℤ₂ parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms

s-channel classification - sample

DM in $(1, N, \beta)$

ID	х	$\alpha + \beta$	\mathbf{M}_{s}	Spin	$(SM_1 SM_2)$	SM_3	M-X-X
ST11		7	(3 2 ⁷)	В	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		
ST12		3	(3, 2, 3)	F	$(u_R H)$		
ST13	$(3 N \pm 1 \alpha)$	1	(3, 2, 1)	В	$(d_R\overline{L_L}), (\overline{Q_L}\overline{d_R}), (u_RL_L)$		
ST14	$(3, N \pm 1, \alpha)$	3	$(3, 2, \frac{1}{3})$	F	$(u_R H^{\dagger}), (d_R H)$	Q_L	
ST15		5	$(3, 2, -\frac{5}{2})$	В	$(\overline{Q_L}\overline{u_R}), (Q_L\ell_R), (d_RL_L)$		
ST16		- 3	$(3, 2, -\frac{1}{3})$	F	$(d_R H^{\dagger})$		
ST17		4	(3, 3, 4)	В	$(Q_L \overline{L_R})$		$\checkmark \alpha = -\frac{2}{3}$
ST18	$(3 N + 2 \alpha)$	3	$(3, 3, \frac{3}{3})$	F	$(Q_L H)$		
ST19	$(3, N \pm 2, \alpha)$	_ 2	$(3, 3, -\frac{2}{3})$	В	$(\overline{Q_L Q_L}), (Q_L L_L)$		$\checkmark \alpha = \frac{1}{3}$
ST20		3	$(0, 0, -\frac{1}{3})$	F	$(Q_L H^{\dagger})$		

t-channel classification - sample

DM in $(1, N, \beta)$

ID	х	$\alpha + \beta$	M_t	Spin	$(\mathrm{SM}_1~\mathrm{SM}_2)$	SM_3
TU26			$(1, N \pm 1, \beta - 1)$	Ι	(HH^{\dagger})	
TU27			$(1,N\pm 1,\beta+1)$	II	$(L_L H)$	
TU28		0	$(1, N \pm 1, \beta - 1)$	III	(HL_L)	
TU29	$(1 N + 2 \alpha)$		$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TU30	$(1, N \pm 2, \alpha)$		$(1,N\pm 1,\beta+1)$	IV	$(L_L \overline{L_L})$	
TU31			$(1,N\pm 1,\beta+1)$	Ι	$(H^{\dagger}H^{\dagger})$	
TU32		$^{-2}$	$(1,N\pm 1,\beta+1)$	II	$(L_L H^{\dagger})$	
TU33			$(1, N \pm 1, \beta + 1)$	III	$(H^{\dagger}L_L)$	

Classification: hybrid models

ID	Х	$\alpha + \beta$	SM partner	Extensions
H1	$(1 N \alpha)$	0	$B, W_i^{N \ge 2}$	SU1, SU3, TU1, TU4–TU8
H2	$(1, N, \alpha)$	-2	ℓ_R	SU6, SU8, TU10, TU11
H3	$(1 N \pm 1 \infty)$	1	H^{\dagger}	SU10, TU18–TU23
H4	$(1, N \pm 1, \alpha)$	-1	L_L	SU11, TU16, TU17
H5	$(2 N \alpha)$	$\frac{4}{3}$	u_R	ST3, ST5, TT3, TT4
H6	$(3, N, \alpha)$	$-\frac{2}{3}$	d_R	ST7, ST9, TT10, TT11
Η7	$(3, N \pm 1, \alpha)$	$\frac{1}{3}$	Q_L	ST14, TT28–TT31

7 models

ID

 $\alpha + \beta$

Classification: s-channel

ID	х	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	SM3	M-X-X
SU1			(1, 1, 0)	в	$(u_R \overline{u_R}), (d_R \overline{d_R}), (Q_L \overline{Q_L})$ $(\ell_R \overline{\ell_R}), (L_L \overline{L_L}), (HH^{\dagger})$	$_{B,W_{i}^{N\geq2}}$	~
SU2		0		F	$(L_L H)$		
SU3			$(1, 2, 0) N \ge 2$	в	$(Q_L \overline{Q_L}), (L_L \overline{L_L}), (HH^{\dagger})$	B, W_i	~
SU4	$(1 N \alpha)$		(1,3,0) -	F	$(L_L H)$		
SU5	(-,,)		(1.1	В	$(d_R \overline{u_R}), (H^{\dagger} H^{\dagger})$		~
SU6		2	(1,1,-2)	F	$(L_L H^{\dagger})$	ℓ_R	
SU7			(1. n. mN22	В	$(H^{\dagger}H^{\dagger}), (L_L L_L)$		$\checkmark (\alpha = \pm 1)$
SU8			(1, 3, -2) -	F	$(L_L H^{\dagger})$	ℓ_R	
SU9		-4	(1, 1, -4)	в	$(\ell_R \ell_R)$		$\checkmark (\alpha = \pm 2)$
SU10			(1.2.1)	в	$(d_R \overline{Q_L}), (\overline{u_R} Q_L), (\overline{L_L} \ell_R)$	H^{\dagger}	
SU11	(1 N + 1 -)		(1, 2, -1)	F	$(\ell_R H)$	LL	
SU12	(1, 11 ± 1, 11)	2	(1.2.2)	в	$(L_L \ell_R)$		
SU13		-3	(1, 2, -3)	F	$(\ell_R H^{\dagger})$		
SU14		0	(1.2.0)	в	$(L_L \overline{L_L}), (Q_L \overline{Q_L}), (HH^{\dagger})$		$\checkmark (\alpha = 0)$
SU15	(1, N + 2, -)	5	(1, 3, 0)	F	$(L_L H)$		
SU16	$(1, 1 \in I, \alpha)$	2	(1.2.2)	в	$(H^{\dagger}H^{\dagger}), (L_{L}L_{L})$		$\checkmark (\alpha = \pm 1)$
SU17			(1, 3, -1)	F	$(L_L H^{\dagger})$		

ID	х	$\alpha + \beta$	Ma	Spin	(SM ₁ SM ₂)	SM_3	M-X-X
ST1		10 3	$(3, 1, \frac{10}{3})$	в	$(u_R \overline{l_R})$		$\sqrt{\alpha} = -\frac{5}{3}$
ST2			(2.1.4)	в	$(d_R \overline{\ell_R}), (Q_L \overline{L_L}), (\overline{d_R d_R})$		$\sqrt{\alpha} = -\frac{2}{3}$
ST3		4	(3, 1, 3)	F	$(Q_L H)$	u_R	
ST4		2	(9.9.4)N≥2	в	$(Q_L \overline{L_L})$		$\sqrt{\alpha} = -\frac{2}{3}$
ST5	(2 N -)		(3, 3, 3) -	F	$(Q_L H)$	u_R	
ST6	(0, 11, 0)		(3, 1, -2)	в	$(\overline{Q_L Q_L}), (\overline{u_R} \overline{d_R}), (u_R, \ell_R), (Q_L L_L)$		$\sqrt{\alpha} = \frac{1}{3}$
ST7		-2	(0,1, 3)	F	$(Q_L H^{\dagger})$	d_R	
ST8		3	$(3, 3, -2)^{N \ge 2}$	в	$(\overline{Q_L Q_L}), (Q_L L_L)$		$\sqrt{\alpha} = \frac{1}{3}$
ST9			(0,0, 3)	F	$(Q_L H^{\dagger})$	d_R	
ST10		- 5	$(3, 1, -\frac{5}{3})$	в	$(\overline{u_R u_R}), (d_R \ell_R)$		$\sqrt{\alpha} = \frac{4}{3}$
ST11		7	(2.2.7)	в	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		
ST12		3	(0, 2, 3)	F	$(u_R H)$		
ST13	(2 N+1 -)	1	(2.2.1)	в	$(d_R \overline{L_L}), (\overline{Q_L d_R}), (u_R L_L)$		
ST14	(3, 14 ± 1, 4)	2	(0, 2, 3)	F	$(u_R H^{\dagger}), (d_R H)$	Q_L	
ST15		4	(2.2.5)	в	$(\overline{Q_L}\overline{u_R}), (Q_L\ell_R), (d_RL_L)$		
ST16		- 3	(0, 2, -3)	F	$(d_R H^{\dagger})$		
ST17		4	(2.2.4)	в	$(Q_L \overline{L_R})$		$\sqrt{\alpha} = -\frac{2}{3}$
ST18	(2 + 2 -)	3	(0, 0, 3)	F	$(Q_L H)$		
ST19	(3, 14 ± 2, 14)	2	(2.2. 2)	в	$(\overline{Q_L Q_L}), (Q_L L_L)$		$\sqrt{\alpha} = \frac{1}{2}$
ST20		- 3	(0, 0, -3)	F	$(Q_L H^{\dagger})$		

SU type - 17 models

ST type - 20 models

SM₂ M-X-X

(SM, SM₂)

- U: X uncoloured
- T: X SU(3) triplet
- O: X SU(3) octet
- E: X SU(3) exotic

SO1			$(8, 1, 0)^{\neq g[s2]}$	в	$(d_R\overline{d_R}),(u_R\overline{u_R}),(Q_L\overline{Q_L})$	$\checkmark \alpha = 0$
SO2	$(8, N, \alpha)$		$(8, 3, 0)^{N \ge 2}$	В	$(Q_L \overline{Q_L})$	$\checkmark \alpha = 0$
SO3		-2	(8, 1, -2)	В	$(d_R \overline{u_R})$	$\checkmark \alpha = \pm 1$
SO4	$(8, N \pm 1, \alpha)$	-1	(8, 2, -1)	в	$(d_R \overline{Q_L}), (Q_L \overline{u_R})$	
SO5	$(8, N \pm 2, \alpha)$	0	(8, 3, 0)	В	$(Q_L \overline{Q_L})$	$\checkmark \alpha = 0$
SE1		nta	$(6, 1, \frac{8}{3})$	В	$(u_R u_R)$	$\sqrt{\alpha} = -\frac{4}{3}$
SE2	(6 N m)	2	$(6, 1, \frac{2}{3})$	В	$(Q_L Q_L), (u_R d_R)$	$\checkmark (\alpha = -\frac{1}{3})$
SE3	(0, 11, 11)	2	$(6, 3, \frac{2}{3})^{N \ge 2}$	В	$(Q_L Q_L)$	$\sqrt{\alpha} = -\frac{1}{3}$
SE4		- \$	$(6, 1, -\frac{4}{3})$	в	$(d_R d_R)$	$\sqrt{\alpha} = \frac{2}{3}$
SE5	(6 N + 1 a)	cito	$(6, 2, \frac{5}{3})$	В	$(Q_L u_R)$	
SE6	(0, 11 ± 1, 0)	$-\frac{1}{3}$	$(6, 2, -\frac{1}{3})$	в	$(Q_L d_R)$	
SE7	$(6, N \pm 2, \alpha)$	23	$(6, 3, \frac{2}{3})$	в	$(Q_L Q_L)$	$\checkmark \alpha = -\frac{1}{3}$

Spin

SO and SE type - 5 and 7 models

Т

Classification of Simplified Models

Phenomenology

Classification: t-channel

ID	x	$\alpha + \beta$	Mr	Spin	(SM1 SM2)	SM ₃
TU1			$(1, N \pm 1, \beta - 1)$	I	(<i>HH</i> [†])	B. $W_{\cdot}^{N \ge 2}$
TU2			$(1, N \pm 1, \beta \pm 1)$	п	(L + H)	· · ·
TU3			$(1, N \pm 1, \beta - 1)$	Ш	(HL)	
TU4			$(\bar{3}, N \pm 1, \beta - \frac{1}{2})$	IV	(0101)	B. $W_i^{N \ge 2}$
TU5	1	0	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_B \overline{u_B})$	$B, W_i^{N \ge 2}$
TU6			$(\bar{3}, N, \beta + \frac{2}{9})$	IV	$(d_R \overline{d_R})$	$B, W_i^{N \ge 2}$
TU7	1		$(1, N \pm 1, \beta + 1)$	IV	$(L_L \overline{L_L})$	$B, W_i^{N \ge 2}$
TU8	$(1, N, \alpha)$		$(1, N, \beta + 2)$	IV	$(\ell_R \overline{\ell_R})$	$B, W_i^{N \ge 2}$
TU9	1		$(1, N \pm 1, \beta + 1)$	I	$(H^{\dagger}H^{\dagger})$	
TU10			$(1, N \pm 1, \beta + 1)$	п	$(L_L H^{\dagger})$	ℓ_R
TU11	1		$(1, N \pm 1, \beta + 1)$	ш	$(H^{\dagger}L_L)$	ℓ_R
TU12		-2	$(1, N \pm 1, \beta + 1)$	IV	$(L_L L_L)$	
TU13	1		$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}d_R)$	
TU14	1		$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{u_R})$	
TU15		- 4	$(1, N, \beta + 2)$	IV	$(\ell_R \ell_R)$	
TU16			$(1, N, \beta + 2)$	П	$(\ell_R H)$	L_L
TU17			$(1, N \pm 1, \beta - 1)$	ш	$(H\ell_R)$	LL
TU18			$(1, N, \beta + 2)$	IV	$(\ell_R \overline{L_L})$	H^{\dagger}
TU19		1	$(1, N \pm 1, \beta - 1)$	IV	$(\overline{L_L}\ell_R)$	H^{\dagger}
TU20	$(1 N \pm 1 \alpha)$	-1	$(\hat{3}, N, \beta + \hat{\beta})$	IV	$(d_R \overline{Q_L})$	H^{\dagger}
TU21	(1, 11 ± 1, 11)		$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L}d_R)$	H^{\dagger}
TU22			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{u_R})$	H^{\dagger}
TU23			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}Q_L)$	H^{\dagger}
TU24		-3	$(1, N \pm 1, \beta + 1)$	IV	$(L_L \ell_R)$	
TU25			$(1, N, \beta + 2)$	IV	$(\ell_R L_L)$	
TU26			$(1, N \pm 1, \beta - 1)$	I	(HH^{\dagger})	
TU27			$(1, N \pm 1, \beta + 1)$	п	$(L_L H)$	
TU28		0	$(1, N \pm 1, \beta - 1)$	ш	(HL_L)	
TU29	$(1 N + 2 \alpha)$		$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TU30	(1,11 2 2,11)		$(1,N\pm 1,\beta+1)$	IV	$(L_L \overline{L_L})$	
TU31			$(1, N \pm 1, \beta + 1)$	I	$(H^{\dagger}H^{\dagger})$	
TU32		-2	$(1, N \pm 1, \beta + 1)$	$(L_L H^{\dagger})$		
TU33			$(1, N \pm 1, \beta \pm 1)$	III	$(H^{\dagger}L_{T})$	

U	type	- 33	models
---	------	------	--------

TT type - 52 models

ID	x	$\alpha + \beta$	M_t	Spin	$(SM_1 SM_2)$	SM_3
TO1			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TO2]	0	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R \overline{u_R})$	
TO3	$(8, N, \alpha)$		$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{d_R})$	
TO4	1	-2	$(3, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{u_R})$	
TO5			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{uR}dR)$	
TO6			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{Q_L})$	
TO7	(0 N 1 -)		$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L}d_R)$	
TOS	$(8, N \pm 1, \alpha)$	-1	$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{u_R})$	
TO9	1		$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}Q_L)$	
TO10	$(8, N \pm 2, \alpha)$	0	$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TE1		NP N	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R u_R)$	
TE2	1		$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L Q_L)$	
TE3	$(6, N, \alpha)$	3	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R d_R)$	
TE4	1		$(3, N, \beta + \frac{2}{3})$	IV	$(d_R u_R)$	
TE5]	$-\frac{4}{3}$	$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R d_R)$	
TE6		5	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R Q_L)$	
TE7	(6 N ± 1 c)	3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L u_R)$	
TE8	$(0, n \pm 1, \alpha)$	1	$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R Q_L)$	
TE9		- 3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L d_R)$	
TEIO	$(6 N \pm 2 \alpha)$	2	$(5 N \pm 1 R - 1)$	IV	(0.0.)	

TO and TE type - 10 and 10 models

SMA			NR	M^{N}						υş	q_B																	9.L	Q.L	9r	9 E																				
(SM) SMo)	(wR ⁷ R)	$(\frac{2\pi u_R}{R})$	$(Q_L H)$	(HQ_L)	$(\pi \delta n)$	$(q_L \overline{L}_L)$	$(\overline{L} \overline{L} Q_L)$	(ARTR)	$(\frac{d_H d_H}{d_H})$	$(Q_L H^{\dagger})$	$(H^{\dagger}Q_{L})$	(<u>who</u> R)	(40,40)	$\langle u_R \ell_R \rangle$	(I N N I)	$(Q_L L_L)$	(TEQL)	$\langle \overline{\delta_R} \overline{w_R} \rangle$	(0.16 m/z)	$(d_R d_R)$	(R dR)	$\langle u_R H \rangle$	(Hu_R)	(w RLL)	(\overline{L}_{KR})	$(Q_L \overline{\ell}_R)$	$(\frac{\pi n}{n}Q_L)$	$\langle u_R H^{\dagger} \rangle$	$\langle K_R H \rangle$	$(H^{\dagger} \times R)$	$(H\delta_R)$	(w RLL)	(U.C.W.)	(TAM)	(MOTO)	(-11/1-)	(de la)	$(L_{L}d_{R})$	(41.12)	$\langle t_R Q_L \rangle$	$(\frac{\pi h}{2} \frac{d\pi}{dx})$	(21x7b)	$(d_L H)$	(HQ_L)	(2LL)	$(\underline{T}_{\overline{L}}Q_{L})$	$(Q_L H^{\dagger})$	$(H^{\dagger}Q_{L})$	(4111)	(LLQL)	(20.20)
Spla	2	1V	=	101	1V	1V	IV	IV	N	=	101	N	1V	IV	N	N	N	N	IV	IV	N	п	111	1V	N	IV	N	=	=		-	2	2	2			2	N	N	1V	N	1V	=	Ш	N	N	=	111	2	2	N
70	$(\hat{a}, N, \beta - \frac{2}{2})$	$(1, N, \beta - 2)$	$(3, N \pm 1, \beta - \frac{1}{2})$	$(1, N \pm 1, \beta - 1)$	$(1, N, \beta = 2)$	$(3, N \pm 1, \beta - \frac{1}{3})$	$(1, N \pm 1, \beta - 1)$	$(3, N, \beta + \frac{2}{3})$	$(1, N, \beta - \frac{2}{3})$	$(3, N \pm 1, \beta - \frac{1}{2})$	$(1, N \pm 1, \beta + 1)$	$(1, N, \beta, -1, \beta, -1)$ $(2, N, \beta, -1, \beta, -1)$ $(1, N, \beta, -2)$ $(1, N, \beta, -2)$ (1, N,							$(1, N, \beta + 2)$	$(3, N, \beta - \frac{3}{2})$	$(1, N \pm 1, \beta - 1)$	$(3, N, \beta - \frac{3}{2})$	$(1, N \pm 1, \beta - 1)$	$(3, N \pm 1, \beta - \frac{1}{3})$	$(1, N, \beta - 2)$	$(3, N, \beta - \frac{2}{3})$	$(3, N, \beta + \frac{2}{3})$	$(1, N \pm 1, \beta + 1)$	$(1, N \pm 1, \beta - 1)$	$(3, N, \beta - \frac{3}{2})$	$(1, N \pm 1, \beta + 1)$	$3, K, p = \frac{3}{2}$	1010 E 107 E1	21 N ± 1 0± 11	A N.8+21	$(1, N \pm 1, \beta + 1)$	$(3, N \pm 1, \beta - \frac{1}{2})$	$(1, N, \beta + 2)$	$(\frac{1}{2} + 0', N, 6)$	$(3, N \pm 1, \beta + \frac{1}{2})$	$(3, N \pm 1, \beta - \frac{1}{2})$	$(1, N \pm 1, \beta - 1)$	$(3, N \pm 1, \beta - \frac{1}{2})$	$(1, N \pm 1, \beta - 1)$	$(3, N \pm 1, \beta - \frac{1}{2})$	$(1, N \pm 1, \beta \pm 1)$	$(3, N \pm 1, \beta - \frac{1}{2})$	$(1, N \pm 1, \beta + 1)$	$(3, N \pm 1, \beta + \frac{1}{2})$		
0 + 8	9	ŀ				eto									ner I					stin 1				н	10						-1							~						-	e n			n r e T			
×												(3, N, a)																				$(3,N\pm1,\alpha)$															$(3,N\pm2,\alpha)$				
â	TTL	TT2	ELL.	PLL	3TT5	9LLL	LLL.	STT8	6LL	TT10	TITT	TT12	TT13	TT14	21.L.L	21.L.0	LLL	TT18	TT19	TT20	TT21	TT22	TT23	TT24	TT25	TT26	TT27	TT28	TT29	TT30	TT31	TT32	FELL	PETT	-	DOL 1	TTAK	TT39	TT-40	TTTAL	TT42	TT543	TT544	3PTT	TTM6	APJLE	TTAS	TTT49	TT50	TTML	TT52

Complete Classification

Given our assumptions, one of these simplified models of coannihilating dark matter is the one chosen by Nature!

Phenomenology ••••••

Production: s-channel

Phenomenology ••••••

Production: s-channel

Classification of Simplified Models

Phenomenology

Decay: s-channel

Classification of Simplified Models

Phenomenology

Decay: s-channel

Classification of Simplified Models

Phenomenology

Decay: s-channel

• Mono-Y (Y=jet, photon, Z,...) + $\not \in_T$ from DM DM, XX,...

classic signature

Single and Double Resonances from M and MM ATLAS/CMS Exotics

- Mono-Y + $\not\!\!\!E_T$ + soft from XX, MM,...
 - has been motivated, no searches yet
- **Resonance +** $\not\!\!\!E_T$ **+ soft** from MM
 - new signature to explore!

- Mono-Y (Y=jet, photon, Z,...) + $\not \!\! E_T$ from DM DM, XX,...
 - classic signature
- Single and Double Resonances from M and MM
 ATLAS/CMS Exotics

has been motivated, no searches yet

- Resonance + ∉_T + soft from MM
 - new signature to explore!

- - classic signature
- Single and Double Resonances from M and MM
 ATLAS/CMS Exotics
- - has been motivated, no searches yet
- **Resonance +** $\not\!\!\!E_T$ **+ soft** from MM
 - new signature to explore!

- - classic signature
- Single and Double Resonances from M and MM
 - ATLAS/CMS Exotics
- Mono-Y + $\not\!\!E_T$ + soft from XX, MM,...
 - has been motivated, no searches yet
- - new signature to explore!

ID	х	$\alpha + \beta$	M_s	$_{\rm Spin}$	$(SM_1 SM_2)$	SM_3	M-X-X
ST11	$(3, N \pm 1, \alpha)$	$\frac{7}{3}$	$(3, 2, \frac{7}{3})$	В	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		

DM in $(1, N, \beta)$

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Х	(3,2,7/3)	Dirac fermion
M	(3,2,7/3)	Scalar

ID	х	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	SM_3	M-X-X
ST11	$(3, N \pm 1, \alpha)$	$\frac{7}{3}$	$(3, 2, \frac{7}{3})$	В	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		

DM in $(1, N, \beta)$

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Х	(3,2,7/3)	Dirac fermion
М	(3,2,7/3)	Scalar

Motivation

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Х	(3,2,7/3)	Dirac fermion
М	(3,2,7/3)	Scalar

 $\mathcal{L} \supset \mathcal{L}_{kin} + y_D \overline{X} M DM + y_{Q\ell} \overline{Q_L} M \ell_R + y_{Lu} \overline{L_L} M^c u_R + h.c.$

$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{\mathcal{Q}\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{\mathcal{Q}}^{11}$$

Motivation

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Х	(3,2,7/3)	Dirac fermion
М	(3,2,7/3)	Scalar

 $\mathcal{L} \supset \mathcal{L}_{kin} + y_D \overline{X} M DM + y_{Q\ell} \overline{Q_L} M \ell_R + y_{Lu} \overline{L_L} M^c u_R + h.c.$

$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{\mathcal{Q}\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{\mathcal{Q}}^{11}$$

Motivation

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Х	(3,2,7/3)	Dirac fermion
М	(3,2,7/3)	Scalar

 $\mathcal{L} \supset \mathcal{L}_{\mathsf{kin}} + y_D \overline{\mathsf{X}} \mathsf{ M} \mathsf{ DM} + y_{Q\ell} \overline{Q_L} \mathsf{M} \ell_R + y_{Lu} \overline{L_L} \mathsf{M}^c u_R + h.c.$

$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{\mathcal{Q}\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{\mathcal{Q}\ell}^{11}$$

Motivation

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Х	(3,2,7/3)	Dirac fermion
М	(3,2,7/3)	Scalar

 $\mathcal{L} \supset \mathcal{L}_{\mathsf{kin}} + y_D \overline{\mathsf{X}} \mathsf{ M} \mathsf{ DM} + y_{Q\ell} \overline{Q_L} \mathsf{M} \ell_R + y_{Lu} \overline{L_L} \mathsf{M}^c u_R + h.c.$

$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{\mathcal{Q}\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{\mathcal{Q}\ell}^{11}$$

Motivation

Phenomenology

Motivation

Phenomenology

Example - ST11 - Constraints from New Searches

Motivation

Phenomenology

Example - ST11 - Constraints from New Searches

• Coannihilation Codex contains the real model of Nature!

- Guaranteed kinetic & coannihilation vertices \rightarrow signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - precision tests
 - flavour bounds
 - cosmology
 - ...

• Coannihilation Codex contains the real model of Nature!*

- Guaranteed kinetic & coannihilation vertices \rightarrow signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - precision tests
 - flavour bounds
 - cosmology
 - . . .

- Coannihilation Codex contains the real model of Nature!*
- $\bullet\,$ Guaranteed kinetic & coannihilation vertices $\rightarrow\,$ signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - precision tests
 - flavour bounds
 - cosmology
 - . . .

- Coannihilation Codex contains the real model of Nature!*
- $\bullet\,$ Guaranteed kinetic & coannihilation vertices $\rightarrow\,$ signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - precision tests
 - flavour bounds
 - cosmology
 - . . .

- Coannihilation Codex contains the real model of Nature!*
- $\bullet\,$ Guaranteed kinetic & coannihilation vertices $\rightarrow\,$ signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - precision tests
 - flavour bounds
 - cosmology
 - ...

- Coannihilation Codex contains the real model of Nature!*
- Guaranteed kinetic & coannihilation vertices \rightarrow signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - precision tests
 - flavour bounds
 - cosmology
 - ...