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FIG. 1. Artistic view of the DM theory space. See text for detailed explanations.

us to describe the DM-SM interactions mediated by all kinematically inaccessible

particles in an universal way. The DM-EFT approach [3–9] has proven to be very

useful in the analysis of LHC Run I data, because it allows to derive stringent bounds

on the “new-physics” scale Λ that suppresses the higher-dimensional operators. Since

for each operator a single parameter encodes the information on all the heavy states

of the dark sector, comparing LHC bounds to the limits following from direct and

indirect DM searches is straightforward in the context of DM-EFTs.

(II) The large energies accessible at the LHC call into question the momentum expansion

underlying the EFT approximation [6, 9–16], and we can expand our level of detail

toward simplified DM models (for early proposals see for example [17–22]). Such

models are characterized by the most important state mediating the DM particle

interactions with the SM, as well as the DM particle itself. Unlike the DM-EFTs,

simplified models are able to describe correctly the full kinematics of DM production

at the LHC, because they resolve the EFT contact interactions into single-particle s-

channel or t-channel exchanges. This comes with the price that they typically involve

not just one, but a handful of parameters that characterize the dark sector and its

6

Abdallah et al., 1506.03116
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A complete classification of simplified coannihilation models

The Coannihilation Codex

This allows us to
Study connections between experimental probes
Discuss general phenomenology of models
Identify lesser studied scenarios
In the event of a signal, gives a framework for the inverse
problem
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Assumptions

To complete a classification we need to make some
assumptions

DM is a thermal relic
DM is a colourless, electrically neutral particle in (1,N, β)

Coannihilation diagram is 2-to-2 via dimension four,
tree-level couplings
New particles have spin 0, 1/2 or 1
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Classification Procedure

Work in unbroken SU(2)L × U(1)Y

Given SM field content, iterate over SM1 and SM2 to find all
possible X using

Gauge invariance
Lorentz invariance
Z2 parity (to prevent DM decay)

Then find all s-channel and t-channel mediators, using
same restrictions and

Dimension four, tree-level couplings
Gauge bosons only couple through kinetic terms
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s-channel classification - sample

DM in (1,N, β)

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

ST11

(3, N ± 1, α)

7
3

(3, 2, 7
3
)

B (QL`R), (uRLL)

ST12 F (uRH)

ST13 1
3

(3, 2, 1
3
)

B (dRLL), (QLdR), (uRLL)

ST14 F (uRH
†), (dRH) QL

ST15
− 5

3
(3, 2,− 5

3
)

B (QLuR), (QL`R), (dRLL)

ST16 F (dRH
†)

ST17

(3, N ± 2, α)

4
3

(3, 3, 4
3
)

B (QLLR) Xα = − 2
3

ST18 F (QLH)

ST19
− 2

3
(3, 3,− 2

3
)

B (QLQL), (QLLL) Xα = 1
3

ST20 F (QLH
†)
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t-channel classification - sample

DM in (1,N, β)

ID X α + β Mt Spin (SM1 SM2) SM3

TU26

(1, N ± 2, α)

0

(1, N ± 1, β − 1) I (HH†)

TU27 (1, N ± 1, β + 1) II (LLH)

TU28 (1, N ± 1, β − 1) III (HLL)

TU29 (3̄, N ± 1, β − 1
3

) IV (QLQL)

TU30 (1, N ± 1, β + 1) IV (LLLL)

TU31

−2

(1, N ± 1, β + 1) I (H†H†)

TU32 (1, N ± 1, β + 1) II (LLH
†)

TU33 (1, N ± 1, β + 1) III (H†LL)

I

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt II

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt

III

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt IV

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt

X

DM

SM2
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Classification: hybrid models

ID X α + β SM partner Extensions

H1
(1, N, α)

0 B,W
N≥2
i SU1, SU3, TU1, TU4–TU8

H2 −2 `R SU6, SU8, TU10, TU11

H3
(1, N ± 1, α) −1

H† SU10, TU18–TU23

H4 LL SU11, TU16, TU17

H5
(3, N, α)

4
3

uR ST3, ST5, TT3, TT4

H6 − 2
3

dR ST7, ST9, TT10, TT11

H7 (3, N ± 1, α) 1
3

QL ST14, TT28–TT31

7 models
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Classification: s-channel

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

SU1

(1, N, α)

0

(1, 1, 0)
B

(uRuR), (dRdR), (QLQL)
B,W

N≥2
i

X
(`R`R), (LLLL), (HH†)

SU2 F (LLH)

SU3
(1, 3, 0)N≥2

B (QLQL), (LLLL), (HH†) B, Wi X

SU4 F (LLH)

SU5

−2

(1, 1,−2)
B (dRuR), (H†H†) X

SU6 F (LLH
†) `R

SU7
(1, 3,−2)N≥2

B (H†H†), (LLLL) X(α = ±1)

SU8 F (LLH
†) `R

SU9 −4 (1, 1,−4) B (`R`R) X(α = ±2)

SU10

(1, N ± 1, α)

−1 (1, 2,−1)
B (dRQL), (uRQL), (LL`R) H†

SU11 F (`RH) LL

SU12
−3 (1, 2,−3)

B (LL`R)

SU13 F (`RH
†)

SU14

(1, N ± 2, α)

0 (1, 3, 0)
B (LLLL), (QLQL), (HH†) X(α = 0)

SU15 F (LLH)

SU16
−2 (1, 3,−2)

B (H†H†), (LLLL) X(α = ±1)

SU17 F (LLH
†)

SU type - 17 models

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

ST1

(3, N, α)

10
3

(3, 1, 10
3

) B (uRlR) Xα = − 5
3

ST2

4
3

(3, 1, 4
3
)

B (dR`R), (QLLL), (dRdR) Xα = − 2
3

ST3 F (QLH) uR

ST4
(3, 3, 4

3
)N≥2 B (QLLL) Xα = − 2

3

ST5 F (QLH) uR

ST6

− 2
3

(3, 1,− 2
3
)

B (QLQL), (uRdR), (uR, `R), (QLLL) Xα = 1
3

ST7 F (QLH
†) dR

ST8
(3, 3,− 2

3
)N≥2 B (QLQL), (QLLL) Xα = 1

3

ST9 F (QLH
†) dR

ST10 − 8
3

(3, 1,− 8
3
) B (uRuR), (dR`R) Xα = 4

3

ST11

(3, N ± 1, α)

7
3

(3, 2, 7
3
)

B (QL`R), (uRLL)

ST12 F (uRH)

ST13 1
3

(3, 2, 1
3
)

B (dRLL), (QLdR), (uRLL)

ST14 F (uRH
†), (dRH) QL

ST15
− 5

3
(3, 2,− 5

3
)

B (QLuR), (QL`R), (dRLL)

ST16 F (dRH
†)

ST17

(3, N ± 2, α)

4
3

(3, 3, 4
3
)

B (QLLR) Xα = − 2
3

ST18 F (QLH)

ST19
− 2

3
(3, 3,− 2

3
)

B (QLQL), (QLLL) Xα = 1
3

ST20 F (QLH
†)

ST type - 20 models

U: X uncoloured

T: X SU(3) triplet

O: X SU(3) octet

E: X SU(3) exotic

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

SO1

(8, N, α)
0

(8, 1, 0)6=g[s2] B (dRdR), (uRuR), (QLQL) Xα = 0

SO2 (8, 3, 0)N≥2 B (QLQL) Xα = 0

SO3 −2 (8, 1,−2) B (dRuR) Xα = ±1

SO4 (8, N ± 1, α) −1 (8, 2,−1) B (dRQL), (QLuR)

SO5 (8, N ± 2, α) 0 (8, 3, 0) B (QLQL) Xα = 0

SE1

(6, N, α)

8
3

(6, 1, 8
3
) B (uRuR) Xα = − 4

3

SE2 2
3

(6, 1, 2
3
) B (QLQL), (uRdR) X(α = − 1

3
)

SE3 (6, 3, 2
3
)N≥2 B (QLQL) Xα = − 1

3

SE4 − 4
3

(6, 1,− 4
3
) B (dRdR) Xα = 2

3

SE5
(6, N ± 1, α)

5
3

(6, 2, 5
3
) B (QLuR)

SE6 − 1
3

(6, 2,− 1
3
) B (QLdR)

SE7 (6, N ± 2, α) 2
3

(6, 3, 2
3
) B (QLQL) Xα = − 1

3

SO and SE type - 5 and 7 models
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Classification: t-channel

ID X α + β Mt Spin (SM1 SM2) SM3

TU1

(1, N, α)

0

(1, N ± 1, β − 1) I (HH†) B, W
N≥2
i

TU2 (1, N ± 1, β + 1) II (LLH)

TU3 (1, N ± 1, β − 1) III (HLL)

TU4 (3̄, N ± 1, β − 1
3

) IV (QLQL) B, W
N≥2
i

TU5 (3̄, N, β − 4
3

) IV (uRuR) B, W
N≥2
i

TU6 (3̄, N, β + 2
3

) IV (dRdR) B, W
N≥2
i

TU7 (1, N ± 1, β + 1) IV (LLLL) B, W
N≥2
i

TU8 (1, N, β + 2) IV (`R`R) B, W
N≥2
i

TU9

−2

(1, N ± 1, β + 1) I (H†H†)

TU10 (1, N ± 1, β + 1) II (LLH
†) `R

TU11 (1, N ± 1, β + 1) III (H†LL) `R

TU12 (1, N ± 1, β + 1) IV (LLLL)

TU13 (3, N, β + 4
3

) IV (uRdR)

TU14 (3̄, N, β + 2
3

) IV (dRuR)

TU15 −4 (1, N, β + 2) IV (`R`R)

TU16

(1, N ± 1, α)

−1

(1, N, β + 2) II (`RH) LL

TU17 (1, N ± 1, β − 1) III (H`R) LL

TU18 (1, N, β + 2) IV (`RLL) H†

TU19 (1, N ± 1, β − 1) IV (LL`R) H†

TU20 (3̄, N, β + 2
3

) IV (dRQL) H†

TU21 (3, N ± 1, β + 1
3

) IV (QLdR) H†

TU22 (3̄, N ± 1, β − 1
3

) IV (QLuR) H†

TU23 (3, N, β + 4
3

) IV (uRQL) H†

TU24
−3

(1, N ± 1, β + 1) IV (LL`R)

TU25 (1, N, β + 2) IV (`RLL)

TU26

(1, N ± 2, α)

0

(1, N ± 1, β − 1) I (HH†)

TU27 (1, N ± 1, β + 1) II (LLH)

TU28 (1, N ± 1, β − 1) III (HLL)

TU29 (3̄, N ± 1, β − 1
3

) IV (QLQL)

TU30 (1, N ± 1, β + 1) IV (LLLL)

TU31

−2

(1, N ± 1, β + 1) I (H†H†)

TU32 (1, N ± 1, β + 1) II (LLH
†)

TU33 (1, N ± 1, β + 1) III (H†LL)

TU type - 33 models
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TT type - 52 models

ID X α + β Mt Spin (SM1 SM2) SM3

TO1

(8, N, α)

0

(3̄, N ± 1, β − 1
3

) IV (QLQL)

TO2 (3̄, N, β − 4
3

) IV (uRuR)

TO3 (3̄, N, β + 2
3

) IV (dRdR)

TO4
−2

(3̄, N, β + 2
3

) IV (dRuR)

TO5 (3, N, β + 4
3

) IV (uRdR)

TO6

(8, N ± 1, α) −1

(3̄, N, β + 2
3

) IV (dRQL)

TO7 (3, N ± 1, β + 1
3

) IV (QLdR)

TO8 (3̄, N ± 1, β − 1
3

) IV (QLuR)

TO9 (3, N, β + 4
3

) IV (uRQL)

TO10 (8, N ± 2, α) 0 (3̄, N ± 1, β − 1
3

) IV (QLQL)

TE1

(6, N, α)

8
3

(3̄, N, β − 4
3

) IV (uRuR)

TE2

2
3

(3̄, N ± 1, β − 1
3

) IV (QLQL)

TE3 (3̄, N, β − 4
3

) IV (uRdR)

TE4 (3̄, N, β + 2
3

) IV (dRuR)

TE5 − 4
3

(3̄, N, β + 2
3

) IV (dRdR)

TE6

(6, N ± 1, α)

5
3

(3̄, N, β − 4
3

) IV (uRQL)

TE7 (3̄, N ± 1, β − 1
3

) IV (QLuR)

TE8
- 1
3

(3̄, N, β + 2
3

) IV (dRQL)

TE9 (3̄, N ± 1, β − 1
3

) IV (QLdR)

TE10 (6, N ± 2, α) 2
3

(3̄, N ± 1, β − 1
3

) IV (QLQL)

TO and TE type - 10 and 10 models
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Complete Classification

Given our assumptions, one of these simplified models of
coannihilating dark matter is the one chosen by Nature!
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Production: s-channel
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Decay: s-channel
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Inescapable Signatures: s-channel

Mono-Y (Y=jet, photon, Z,. . . ) + /ET from DM DM, XX,. . .
classic signature

Single and Double Resonances from M and MM
ATLAS/CMS Exotics

Mono-Y + /ET + soft from XX, MM,. . .
has been motivated, no searches yet

Resonance + /ET + soft from MM
new signature to explore!
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Example - ST11

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

ST11 (3, N ± 1, α) 7
3

(3, 2, 7
3
) B (QL`R), (uRLL)

DM in (1,N, β)

Field Rep. Spin and mass assignment

DM (1,1,0) Majorana fermion

X (3,2,7/3) Dirac fermion

M (3,2,7/3) Scalar
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Example - ST11

Field Rep. Spin and mass assignment

DM (1,1,0) Majorana fermion

X (3,2,7/3) Dirac fermion

M (3,2,7/3) Scalar

X

DM
M

q̄

`

L ⊃ Lkin + yDX M DM + yQ`QLM`R + yLuLLMcuR + h.c.

∆ =
mX − mDM

mDM
yij

Q` = yLu = 0 yD = y11
Q`
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Example - ST11 - Relic Density
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Example - ST11 - Relic Density
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Example - ST11 - Existing Collider Constraints
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Example - ST11 - Constraints from New Searches
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Summary

Coannihilation Codex contains the real model of Nature!∗

Guaranteed kinetic & coannihilation vertices→ signatures
Classify general signatures

Identify new signatures
Identify interesting models, e.g., leptoquarks and DM

Huge number of DM models
collider signatures
direct and indirect detection
precision tests
flavour bounds
cosmology
. . .

∗Given our assumptions.
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