

Direct and indirect constraints on CP-violation in the Higgs sector

Jordy de Vries: Forschungszentrum Jülich (IKP-IAS)

Mostly based on: Arxiv:1510:00725

With: V. Cirigliano, Y-T. Chien, W. Dekens, E. Mereghetti (Los Alamos National Laboratory)

Outline of this talk

Part I: The search for CP violation with EDMs.

Part II: The EFT framework and its connection to low energy
 EDMs of hadrons, nuclei, atoms, and molecules

Part III: EDM/LHC Constraints on CPV Higgs couplings

EDMs 101

• Electric and Magnetic Dipole Moment (EDM and MDM)

$$\mathcal{L}_d = -\frac{d_e}{2} \bar{\Psi} \,\sigma^{\mu\nu} \gamma^5 \Psi F_{\mu\nu} - \frac{d_m}{2} \bar{\Psi} \,\sigma^{\mu\nu} \Psi F_{\mu\nu}$$

PhD Thesis Hudson

EDMs 101

• Electric and Magnetic Dipole Moment (EDM and MDM)

$$\mathcal{L}_d = -\frac{d_e}{2} \bar{\Psi} \,\sigma^{\mu\nu} \gamma^5 \Psi F_{\mu\nu} - \frac{d_m}{2} \bar{\Psi} \,\sigma^{\mu\nu} \Psi F_{\mu\nu}$$

PhD Thesis Hudson

EDMs in the Standard Model

• Electroweak CP-violation very ineffective

- Quark EDMs = 0 at 2-loops , Electron EDM = 0 at 3-loops
- Dominant neutron EDM from CP-odd four-quark operators

Hoogeveen '90, Khriplovich, Zhitnitsky '82, Czarnecki, Krause '97, Mannel, Uraltsev '12, Seng '14

Neutron EDM from CKM

5 to 6 orders **below** upper bound **— Out of reach!**

With linear extrapolation: CKM neutron EDM in 2075....

I.B. Khriplovich, S.K. Lamoreaux, CP Violation Without Strangeness, Springer, 1997

Mitglied der Helmholtz-Gemeinschaft

In upcoming experiments:

For the forseeable future: EDMs are 'background-free' searches for new physics

Active experimental field

	System	Group	Limit	C.L.	Value	Year
ſ	²⁰⁵ TI	Berkeley	1.6×10^{-27}	90%	6.9(7.4) × 10 ⁻²⁸	2002
	YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
e –	$Eu_{0.5}Ba_{0.5}TiO_3$	Yale	6.05×10^{-25}	90	$-1.07(3.06)(1.74) \times 10^{-25}$	2012
	PbO	Yale	1.7×10^{-26}	90	$-4.4(9.5)(1.8) \times 10^{-27}$	2013
	ThO	ACME	8.7 × 10 ⁻²⁹	90	$-2.1(3.7)(2.5) \times 10^{-29}$	2014
	n	Sussex-RAL-ILL	2.9 × 10 ⁻²⁶	90	$0.2(1.5)(0.7) \times 10^{-26}$	2006
	¹²⁹ Xe	UMich	6.6×10^{-27}	95	$0.7(3.3)(0.1) \times 10^{-27}$	2001
	¹⁹⁹ Hg	UWash	3.1×10^{-29}	95	$0.49(1.29)(0.76) \times 10^{-29}$	2009
	muon	E821 BNL <i>g</i> -2	1.8×10^{-19}	95	$0.0(0.2)(0.9) \times 10^{-19}$	2009

$$d_e \le 10^{-28} e \, cm \simeq 10^{-14} \, e \, \text{GeV}^{-1} \qquad d_e \sim$$

$$d_e \sim \left(\frac{\alpha_{em}}{\pi}\right)^n \frac{m_e}{\Lambda^2} \sin\phi$$

If phase = O(1): $\Lambda > 10 \text{ TeV} (n=1)$, $\Lambda > 0.5 \text{ TeV} (n=2)$

(Model dependent!)

Active experimental field

$$d_e \le 10^{-28} e \, cm \simeq 10^{-14} \, e \, \text{GeV}^{-1} \qquad d_e \sim \left(\frac{\alpha_{em}}{\pi}\right)^n \frac{m_e}{\Lambda^2} \, \sin\phi$$

If phase = O(1): $\Lambda > 10 \text{ TeV} (n=1)$, $\Lambda > 0.5 \text{ TeV} (n=2)$

(Model dependent!)

Step 1: SM as an EFT

- Assume any BSM physics lives at scales $>> M_{\rm EW}$
- Match to full set of CP-odd operators (model independent *)
 - 1) Degrees of freedom: Full SM field content
 - 2) Symmetries: Lorentz, SU(3)xSU(2)xU(1)

$$L_{new} = \frac{1}{M_{CP}} L_5 + \frac{1}{M_{CP}^2} L_6 + \cdots$$

dim-5 generates neutrino masses/mixing, neglected here

* **Big assumption**: no new light fields

Buchmuller & Wyler '86 Gradzkowski et al '10

One must focus

- Focus on CPV quark-Higgs and gluon-Higgs terms
- Still room for SM deviations
- Typical CP-violation in 2HDMs (and similar models)
- Popular for baryogenesis
 (e.g. Im yt > 0.1)
- Ilustrates EDM/LHC complementarity + caveats

Flavor-changing Yukawa's: Harnik et al '12 & Blankenburg et al '12

Some earlier studies: Kamenik et al '12, Brod et al '13

Dipole operators

Mitglied der H

Dipole operators

Mitglied der Hel

Gluon chromo-EDM

Gluon chromo-EDM

Electron EDM and quark (C)EDMs.

Weinberg operator

When the dust settles....

Crossing the barrier

Chiral EFT

• Use the symmetries of QCD to obtain chiral Lagrangian

$$L_{QCD} \rightarrow L_{chiPT} = L_{\pi\pi} + L_{\pi N} + L_{NN} + \cdots$$

- Quark masses = $0 \rightarrow QCD$ has $SU(2)_{L}xSU(2)_{R}$ symmetry
 - Spontaneously broken to SU(2)-isospin
 - Pions are Goldstone bosons
 - Explicit breaking (quark mass) \rightarrow pion mass
- ChPT gives systematic expansion in $Q/\Lambda_{\chi} \sim m_{\pi}/\Lambda_{\chi}$ $\Lambda_{\chi} \simeq 1 \, GeV$
 - Form of interactions fixed by symmetries
 - Each interactions comes with an unknown constant (LEC)
 - Successful nucleon-nucleon potential (chiral EFT)

Weinberg, Gasser, Leutwyler, and many many others

79

$$\mathcal{L} = -e^{i\rho}\bar{q}_L M q_R - \theta \frac{\alpha_s}{16\pi} G\tilde{G} + \text{h.c.}$$

After axial U(1) and SU(2) rotations, two-flavored mass part of QCD:

$$\mathcal{L} = -\bar{m}\,\bar{q}q - \varepsilon \bar{m}\,\bar{q}\tau^3 q + m_\star \bar{ heta}\,\bar{q}i\gamma^5 q$$
 Crewther et al'
Baluni '79

 $\bar{m} = \frac{m_u + m_d}{2}$

 $\bar{\theta} = \theta + 2\rho$

 $\varepsilon = \frac{m_u - m_d}{m_u + m_d}$

$$m_{\star} = \frac{m_u m_d}{m_u + m_d}$$

$$\mathcal{L} = -e^{i\rho}\bar{q}_L M q_R - \theta \frac{\alpha_s}{16\pi} G\tilde{G} + \text{h.c.}$$

After axial U(1) and SU(2) rotations, two-flavored mass part of QCD:

$$\mathcal{L}=-ar{m}\,ar{q}q-arepsilonar{m}\,ar{q} au^3q+m_\starar{ heta}\,ar{q}i\gamma^5q$$
 Crewther et al' 79
Baluni '79
 $ar{ heta}= heta+2
ho$ Linked via SU_A(2) rotation

 $\varepsilon = \frac{m_u - m_d}{m_u + m_d}$

 \bar{m}

Mitglied der Helmholtz-Gemeinschaft

$$\rho_{\theta} = -\frac{m_{\star}\bar{\theta}}{\varepsilon\bar{m}} \simeq -\frac{1-\varepsilon^2}{2\varepsilon}\bar{\theta}$$

$$\mathcal{L} = -\varepsilon \bar{m} \, \bar{q} \tau^3 q + m_\star \bar{\theta} \, \bar{q} i \gamma^5 q$$

Explicit ChPT construction shows a relation between:

$$\mathcal{L} = \frac{\delta m_N}{2} \bar{N} \tau^3 N + \bar{g}_0 \bar{N} \pi \cdot \tau N \qquad N = (p \ n)$$

Nucleon mass splitting (strong part, no QED part!) CP-odd pion-nucleon interaction

$$\mathcal{L} = -\varepsilon \bar{m} \, \bar{q} \tau^3 q + m_\star \bar{\theta} \, \bar{q} i \gamma^5 q$$

Explicit ChPT construction shows a relation between:

$$\mathcal{L} = \frac{\delta m_N}{2} \bar{N} \tau^3 N + \bar{g}_0 \bar{N} \pi \cdot \tau N \qquad N = (p \ n)$$

Nucleon mass splitting (strong part, no QED part!) CP-odd pion-nucleon interaction

$$\frac{\bar{g}_0}{f_\pi} = \delta m_N \rho_\theta = -\delta m_N \frac{1-\varepsilon^2}{2\varepsilon} \bar{\theta} = -(15.5 \pm 2.5) \cdot 10^{-3} \bar{\theta}$$

- Using **lattice results** for (nucleon, quark) mass differences Walker-Loud '14, Borsanyi '14, Aoki (FLAG) '13,
- This and other relations hold up to N2LO in SU(2) and SU(3) ChPT JdV, Mereghetti, Walker-Loud '15

- Loop is divergent.... Need a counter-term
- Loop is **enhanced** by chiral logarithm (long-rang physics)

 $\bar{g}_0 = -(15.5 \pm 2.5) \cdot 10^{-3} \bar{\theta}$ $d_n \simeq -2.5 \cdot 10^{-16} \,\overline{\theta} \, e \,\mathrm{cm}$ $\bar{\theta} < 10^{-10}$

Experimental constraint:

- Loop is divergent.... Need a counter-term
- Loop is enhanced by chiral logarithm (long-rang physics)

 $\bar{g}_0 = -(15.5 \pm 2.5) \cdot 10^{-3} \bar{\theta} \longrightarrow d_n \simeq -2.5 \cdot 10^{-16} \bar{\theta} e \,\mathrm{cm}$

- Experimental constraint:
 - Lattice + ChPT

$$\begin{split} d_n &= -(2.7\pm 1.2)\cdot 10^{-16}\,\bar{\theta}\,e \qquad \text{Shintani et al '12} \\ d_n &= -(3.9\pm 1.0)\cdot 10^{-16}\,\bar{\theta}\,e \qquad \text{Guo et al '15} \end{split}$$

 $\bar{\theta} < 10^{-10}$

Crewther et al., '79, Pich, Rafael, '91 Guo et al, '10 '12 '14, Mereghetti et al '10 '11 '14

Strong CP problem

- Set one quark mass to zero. Disfavored by lattice QCD.
- Assume P or CP exact at high energies (e.g. left-right models)
- Peccei-Quinn mechanism -> axions (we assumed this)

Left with the dim6 sources

Quark EDM accurately determined recently !

T. Bhattacharya et al '15

- $d_n = -(0.22 \pm 0.03)d_u + (0.74 \pm 0.07)d_d + (0.008 \pm 0.01)d_s$
 - ChPT extrapolation to physical pion mass

Left with the dim6 sources

Quark EDM accurately determined recently !

T. Bhattacharya et al '15

- $d_n = -(0.22 \pm 0.03)d_u + (0.74 \pm 0.07)d_d + (0.008 \pm 0.01)d_s$
 - ChPT extrapolation to **physical pion mass**
- Quark CEDM no lattice calculations yet. But in progress.

ChiPT/QCD sum rules: pion-nucleon couplings and nucleon EDMs 50-75% uncertainty Pospelov, Ritz '02 '05

JdV et al '10 '13 Hisano et al ' 12 '13

Weinberg estimate for nEDM

 $d_n = \pm [(50 \pm 40) \,\mathrm{MeV}] \,e \, d_W$

Demir et al '03

pion-nucleon couplings **suppressed** (chiral symmetry)

Storage rings experiments

Farley et al PRL '04

• New kid on the block: **Charged particle in storage ring**

Limit on muon EDM

Bennett et al (BNL g-2) PRL '09

- $d_{\mu} \le 1.8 \cdot 10^{-19} \ e \ cm \quad (95\% \ C.L.)$
- Proposals to measure EDMs
 of proton, deuteron, 3He at level

 $\sim 10^{-29} \ e \ cm$

COSY @ Jülich Brookhaven/Fermilab

• Other light nuclei?

- Tree-level: no loop suppression
- Very good theoretical control !

$$d_{A} = <\Psi_{A} \parallel \vec{J}_{eP} \parallel \Psi_{A} > + 2 < \Psi_{A} \parallel \vec{J}_{CP} \parallel \tilde{\Psi}_{A} >$$

$$(E - H_{PT}) |\Psi_A \rangle = 0 \qquad (E - H_{PT}) |\tilde{\Psi}_A \rangle = V_{eP} |\Psi_A \rangle$$

Input

- 1. CP-even and -odd potential from **chiral EFT**
- 2. Solve Schrodinger equations numerically

Epelbaum et al '05 Maekawa et al '11

Example: deuteron EDM

- Two contributions (NLO)
 - 1. Sum of nucleon EDMs
 - 2. CP-odd pion exchange

Errors from Bsaisou et al JHEP `14

$$d_{D} = d_{n} + d_{p} + \left[(0.18 \pm 0.02) \,\overline{g}_{1} + (0.0028 \pm 0.0003) \,\overline{g}_{0} \,\right] e \, fm$$

Theoretical accuracy is good (chiral corrections + cut-off dependence)

Strong isospin filter

Example: deuteron EDM

Target of storage ring measurement

- Two contributions (NLO)
 - 1. Sum of nucleon EDMs
 - 2. CP-odd pion exchange

Errors from Bsaisou et al JHEP `14

$$d_{D} = d_{n} + d_{p} + \left[(0.18 \pm 0.02) \,\overline{g}_{1} + (0.0028 \pm 0.0003) \,\overline{g}_{0} \,\right] e \, fm$$

Theoretical accuracy is good (chiral corrections + cut-off dependence)

Strong isospin filter

- Tree-level pion exchange can dominate the nuclear EDM
- dD ~ |6 dn| for qCEDMs, dD~dn+dp for qEDM/Weinberg
- Differentiate between various BSM models (2HDM, MLRSM)

Diamagnetic EDMs

Strongest bound on atomic EDM:

 $d_{199}_{Hg} < 3.1 \cdot 10^{-29} \ e \ cm$

New measurements expected: Hg, Ra, Xe,

Schiff Theorem: EDM of nucleus is screened by electron cloud if:

- 1. Point particles
- 2. Non-relativistic kinematics

Schiff, '63

Diamagnetic EDMs

Schiff, '63

Strongest bound on atomic EDM:

 $d_{199}_{Hg} < 3.1 \cdot 10^{-29} \ e \ cm$

New measurements expected: Hg, Ra , Xe,

Schiff Theorem: EDM of nucleus is screened by electron cloud if:

- 1. Point particles
- 2. Non-relativistic kinematics

Screening incomplete: nuclear finite size (Schiff moment **S**)

Typical suppression:

$$\frac{d_{Atom}}{d_{nucleus}} \propto 10 Z^2 \left(\frac{R_N}{R_A}\right)^2 \approx 10^{-3}$$

• Atomic part well under control

$$d_{199}_{Hg} = (2.8 \pm 0.6) \cdot 10^{-4} S_{Hg} e fm^{2}$$
$$d_{225}_{Ra} = (7.2 \pm 1.5) \cdot 10^{-4} S_{Ra} e fm^{2}$$

Dzuba et al, '02, '09 Sing et al, '15

Calculating Schiff Moments

Task: Calculate Schiff Moments of Hg, Ra, Xe, ...

Flambaum, de Jesus, Engel, Dobaczewski, Dmitriev, Sen'kov,.....

- **Typically only one-pion exchange** (sometimes nucleon EDMs)
- Very complicated many-body calculation

Dmitriev, Sen'kov '03

• Use nuclear model and mean-field theory

$$S_{\rm Hg} = \left[(0.35 \pm 0.3)\bar{g}_0 + (0.35 \pm 0.70)\bar{g}_1 \right] e \,{\rm fm}^3$$

• Large uncertainties. Even unknown sign !

Probing the electron EDM

Bound on TI EDM

$$d_{205} < 9 \cdot 10^{-25} \ e \ cm$$

What about screening? Schiff theorem violated by relativity

$$d_A(d_e) = K_A d_e \qquad K_A \propto Z^3 \alpha_{em}^2$$

Sandars '65

Regan et al '02

Strong enhancement!

$$K_{Tl} = -(570 \pm 20) \longrightarrow d_e < 1.6 \cdot 10^{-27} e cm$$

Liu,Kelly '92,

Dzuba, Flambaum '09,

Porsev et al '12

Polar molecules

Polar molecules: Convert small external to huge internal field

Kozlov et al '94 '97, Quiney et al '98, Mayer, Bohn '08

$$\Delta E_{YbF} = (15 \pm 2) \cdot GeV \left(\frac{d_e}{e \ cm}\right)$$
$$\Delta E_{ThO} = (80 \pm 10) \cdot GeV \left(\frac{d_e}{e \ cm}\right)$$

Meyer, Bohn '08, Skipnikov et al '13, Fleig, Nayak '14,

The most recent constraint is then:

$$d_e < 8.7 \cdot 10^{-29} \ e \ cm$$

One order improvement expected next 5 years...

Baron et al '13

Strategy for setting limits

Study impact of uncertainties in the hadronic/nuclear EDMs

- 1. Central: use central value matrix elements (most common method)
- RFit ("Range-Fit"): vary matrix elements in their allowed ranges; minimized chi-squared (=most conservative bounds)

Strategy copied from CKMfitter group '04

Strategy for setting limits

Study impact of uncertainties in the hadronic/nuclear EDMs

- 1. Central: use central value matrix elements (most common method)
- 2. RFit ("Range-Fit"): vary matrix elements in their allowed ranges; minimized chi-squared (=most conservative bounds) Strategy copied from CKMfitter group '04
- **3. RFit+:** Rfit with improved theory (50% uncertainties everywhere)

Realistic (but challenging) target for Lattice-QCD + nuclear structure

• Dedicated Amherst workshop, January '15 → road map "Hadronic Matrix Elements for Probes for CP-violation"

Anomalous gluon-higgs coupling

LHC: Higgs production via gluon fusion

g q q

Low Energy: quark (C)EDM + Weinberg

$$\mu = \frac{\sigma_{\rm GGF}^{SM} + \sigma_{\rm GGF}^{\theta'}}{\sigma_{\rm GGF}^{SM}}$$
$$= 1 + (2.28 \pm 0.1)(v^2 \theta')^2$$

- Cross section known to N2LO
- Error from scale variation + PDFs

Harlander, Kilgore '02, '03 Anastasiou, Melnikov '02 '03

$$\frac{d_q}{m_q} (1 \,\text{GeV}) = 1.4 \cdot 10^{-4} Q_q \,\theta'(1 \,\text{TeV})$$
$$\frac{\tilde{d}_q}{m_q} (1 \,\text{GeV}) = 1.7 \cdot 10^{-4} \,\theta'(1 \,\text{TeV})$$
$$d_W (1 \,\text{GeV}) = -7.3 \cdot 10^{-6} \,\theta'(1 \,\text{TeV})$$

Anomalous gluon-higgs coupling

Low Energy: quark (C)EDM + Weinberg

	$v^2 \theta'$	d_{n}	d_{Hg}	$d_n, d_{Hg} $	LHC (CMS)
rent nts	Central	0.06	0.04	0.04	0.27
Currenne	RFit	0.23	Х	0.23	0.27
etx	RFit+			0.05	0.27

Bounds on couplings at the scale $\mu = M_{BSM} = ITeV$

Yukawa's u, d, s, c, b

LHC: Higgs production

Low Energy: quark (C)EDM, Weinberg, and de

	$v^2 \mathrm{Im} Y'_u$	$v^2 \mathrm{Im} Y'_d$	$v^2 \mathrm{Im} Y'_s$	$v^2 \mathrm{Im} Y_c'$	$v^2 \mathrm{Im} Y_b'$
Central	$3.9\cdot 10^{-7}$	$3.0 \cdot 10^{-7}$	$4.3 \cdot 10^{-4}$	$1.1 \cdot 10^{-3}$	$8.4 \cdot 10^{-3}$
Rfit	$2.8\cdot 10^{-6}$	$1.5\cdot 10^{-6}$	0.42	$6.5\cdot 10^{-3}$	0.041
LHC	$6.0\cdot10^{-3}$	$7.0 \cdot 10^{-3}$	0.020	0.016	0.036

- u- and d-quark out of reach, but for s, c, b LHC is better or comparable
- With improved theory EDMs could beat LHC Higgs production
- CAVEAT: Only bounds from Higgs production.
 - Should study: Higgs decays and CP-odd correlations

Constraining CPV Yukawa's

EDMs bound imaginary Yukawa's at ppm level

Constraining CPV Yukawa's

Due to nuclear/hadronic uncertainties a free direction emerges

Improved matrix elements

50% matrix elements: almost maximum reach

Additional probes

Deuteron EDM **very** complementary ! Radium as well, but uncertainties are larger

Top quark Yukawa and CEDM

$v^2 \operatorname{Im} Y'_t$	d_n	d_{Hg}	d_e	$[d_n, d_{Hg}, d_e](ext{comb})$	LHC
Central	0.047	0.036	$7.8 \cdot 10^{-3}$	$7.8\cdot 10^{-3}$	0.15
Rfit	0.11	> 1	$7.8 \cdot 10^{-3}$	$7.8 \cdot 10^{-3}$	0.15

- Richer collider phenomenology (ggFusion, ttbar, ttbar h)
- Strong constraint on Im Yt from eEDM (~ SM electron Yukawa!)
 - Little uncertainty on EDM constraint

LHC-EDM complementarity

Two coupling analysis (bottom and strange Yukawa)

RFit

LHC or improved theory removes free direction

LHC-EDM complementarity

• Two coupling analysis (bottom and top Yukawa)

Central

RFit

LHC or improved theory removes free direction

Summary table

	$v^2 \mathrm{Im} Y'_u$	$v^2 \mathrm{Im} Y'_d$	$v^2 \mathrm{Im} Y_c'$	$v^2 \mathrm{Im} Y'_s$	$v^2 \mathrm{Im} Y'_t$	$v^2 { m Im} Y_b'$	$v^2 \theta'$
EDMs	$2.8\cdot10^{-6}$	$1.5\cdot 10^{-6}$	$6.3\cdot10^{-3}$	0.42	$7.8 \cdot 10^{-3}$	0.041	0.23
LHC Run 1	0.06	0.07	0.02	0.015	0.15	0.038	0.27

Pseudoscalar Yukawa's in units of SM Yukawa's

$\mathcal{L} = \frac{m_q}{\tilde{\kappa}} \tilde{a}_{i} \alpha \sigma a b$	$ ilde{\kappa}_u$	$ ilde\kappa_d$	$ ilde{\kappa}_s$	$ ilde{\kappa}_c$	$ ilde{\kappa}_b$	$ ilde{\kappa}_t$
$\mathcal{L} = -\frac{1}{v} \kappa_q q v \gamma_5 q n$	0.45	0.11	58	2.3	3.6	0.01

- Impressive constraints on up, down, and top !
- Can improve a lot with theory + experimental improvements

Conclusion/Summary

EFT approach

- ✓ Framework exists for CP-violation (EDMs) from 1st principles
- ✓ Keep track of symmetries (e.g. chiral) from multi-Tev to atomic scales
- ✓ Specific models can be matched to EFT framework (not discussed here)

CP-violating quark- and gluon-Higgs interactions

- ✓ EDMs and LHC Higgs production are complementary
- ✓ EDMs have a **potential** edge but suffer from hadronic/nuclear uncertainties
- ✓ Set a **target** for lattice/nuclear structure to improve matrix elements

Outlook

- ✓ Study CP-odd effects at colliders (e.g. Bernreuther et al, Tattersall et al)
- ✓ Include Higgs decay and differential distributions
- ✓ Extend analysis to Higgs-EW gauge bosons (in preparation)
- ✓ Compare linear v non-linear EFT realization

Backup

Bounds and scales

Use the neutron* EDM bound (**big uncertainty for some operators: that's why we are here !**)

Dekens, JdV JHEP '13

		$M_T = 1 \mathrm{TeV}$	$M_{\mathcal{T}} = 10 \mathrm{TeV}$
	$(M_T^2)d_{u,d}\left(M_T\right)$	$\leq \{1.8, 1.8\} \cdot 10^{-3}$	$\leq \{2.1, 2.1\} \cdot 10^{-1}$
	$(M_T^2)\tilde{d}_{u,d}\left(M_T\right)$	$\leq \{1.9, 0.91\} \cdot 10^{-3}$	$\leq \{1.7, 0.94\} \cdot 10^{-1}$
Dimensionless	$(M_T^2)d_W\left(M_T\right)$	$\leq 5.6\cdot 10^{-5}$	$\leq 7.0\cdot 10^{-3}$
couplings	$(M_{\mathcal{T}}^2)$ Im $\Sigma_1 (M_{\mathcal{T}})$	$\leq 3.2\cdot 10^{-5}$	$\leq 2.3\cdot 10^{-3}$
	$(M_{\mathcal{T}}^2) \mathrm{Im} \Sigma_8 \left(M_{\mathcal{T}} \right)$	$\leq 3.3\cdot 10^{-4}$	$\leq 2.4\cdot 10^{-2}$
	$(M_{\mathcal{T}}^2)$ Im $\Xi_1 \left(M_{\mathcal{T}} \right)$	$\leq 1.7\cdot 10^{-4}$	$\leq 1.7\cdot 10^{-2}$
	(M_T^2) Im $Y'^{u,d}(M_T)$	$\leq \{8.9, 8.9\} \cdot 10^{-5}$	$\leq \{7.9, 7.9\} \cdot 10^{-3}$
	$(M_T^2)\theta'\left(M_T\right)$	$\leq 2.4 \cdot 10^{-3}$	$\leq 1.5 \cdot 10^{-1}$

* Hg EDM bound gives stronger limits for some operators (e.g. quark CEDM) but also suffers from larger theoretical uncertainty

Engel et al, PNPP '13

Bounds and scales

Use the neutron EDM bound (**big uncertainty for some operators: that's why we are here !**)

Dekens, JdV JHEP '13

		$M_{\mathcal{T}} = 1 \mathrm{TeV}$	$M_{\mathcal{T}} = 10 \mathrm{TeV}$
	$(M_T^2)d_{u,d}\left(M_T\right)$	$\leq \{1.8, 1.8\} \cdot 10^{-3}$	$\leq \{2.1,2.1\}\cdot 10^{-1}$
	$(M_T^2)\tilde{d}_{u,d}\left(M_T\right)$	$\leq \{1.9, 0.91\} \cdot 10^{-3}$	$\leq \{1.7, 0.94\} \cdot 10^{-1}$
Dimensionless	$(M_T^2)d_W\left(M_T\right)$	$\leq 5.6\cdot 10^{-5}$	$\leq 7.0\cdot 10^{-3}$
couplings	(M_T^2) Im $\Sigma_1 (M_T)$	$\leq 3.2\cdot 10^{-5}$	$\leq 2.3\cdot 10^{-3}$
	$(M_{\mathcal{T}}^2) \mathrm{Im} \Sigma_8 \left(M_{\mathcal{T}} \right)$	$\leq 3.3\cdot 10^{-4}$	$\leq 2.4\cdot 10^{-2}$
	(M_T^2) Im $\Xi_1 \left(M_T \right)$	$\leq 1.7\cdot 10^{-4}$	$\leq 1.7\cdot 10^{-2}$
	(M_T^2) Im $Y'^{u,d}(M_T)$	$\leq \{8.9, 8.9\} \cdot 10^{-5}$	$\leq \{7.9, 7.9\} \cdot 10^{-3}$
	$(M_T^2)\theta'(M_T)$	$\leq 2.4 \cdot 10^{-3}$	$\leq 1.5 \cdot 10^{-1}$

So 1 TeV seems 'unnatural' but note loop factors. For instance:

$$M_{CP}^2 \tilde{d}_q \sim \frac{\alpha_s}{4\pi} \sin \phi_{CP} \sim 10^{-2} \sin \phi_{CP} \quad \longrightarrow \quad \sin \phi_{CP} \leq 10^{-1}$$

The interpretation is model dependent

Bounds and scales

Use the neutron EDM bound (**big uncertainty for some operators: that's why we are here !**)

Dekens, JdV JHEP '13

		$M_T = 1 \mathrm{TeV}$	$M_T = 10 \mathrm{TeV}$
Dimensionless	$(M_T^2)C_B\left(M_T\right)$	$\leq 8.1\cdot 10^{-2}$	≤ 4.6
couplings	$(M_{\mathcal{T}}^2)C_W\left(M_{\mathcal{T}}\right)$	$\leq 1.9\cdot 10^{-2}$	≤ 1.1
	$(M_{\mathcal{T}}^2)C_{WB}\left(M_{\mathcal{T}}\right)$	$\leq 1.3\cdot 10^{-2}$	≤ 0.74
	$(M_T^2)C_{d_W}\left(M_T\right)$	≤ 0.11	≤ 11
	$(M_T^2)C_{Wu,d}\left(M_T\right)$	$\leq \{1.0, 0.84\} \cdot 10^{-2}$	$\leq \{0.53, 0.45\}$
	$(M_{\mathcal{T}}^2)C_{Zu,d}\left(M_{\mathcal{T}}\right)$	$\leq \{5.3,2.8\}\cdot 10^{-2}$	$\leq \{2.7, 1.4\}$

'electroweak suppressed operators'

First 4 operators better bound by eEDM

Lattice QCD to the rescue

With QCD lattice input:

$$d_n = (2.7 \pm 1.2) \cdot 10^{-16} \,\overline{\theta} \, e \, cm$$
 Shintani et al '12 '13
$$d_p = -(2.1 \pm 1.2) \cdot 10^{-16} \,\overline{\theta} \, e \, cm$$

$$d_n = (3.9 \pm 1.0) \cdot 10^{-16} \ \overline{\theta} \ e \ cm$$
 Guo et al '15

ChPT extrapolation to physical pion mass and infinite volume

$$d_n = \overline{d}_0 - \overline{d}_1 - \frac{eg_A \overline{g}_0}{4\pi^2 F_\pi} \left(\ln \frac{m_\pi^2}{M_N^2} - \frac{\pi}{2} \frac{m_\pi}{M_N} \right)$$

O'Connell, Savage '06 Guo, Meißner, Akan '14

• Popular problem: see also

Shindler et al '15 Alexandrou et al '15

Still not really clear though....

Fig from M. Constantinou '15

