Symmetry restored in dibosons at the LHC?

Johann Brehmer

Universität Heidelberg

based on 1507.00013 (with JoAnne Hewett, Joachim Kopp, Thomas Rizzo, Jamie Tattersall)

ABHM agenda meeting, November 25, 2015

Outline

A diboson peak (and more) at 1.8...2.0 TeV

- ► ATLAS $VV \rightarrow JJ$: 3.4 σ [1506.00962]
 - X W/Z q JW/Z q J

A diboson peak (and more) at 1.8...2.0 TeV

- ► ATLAS $VV \rightarrow JJ$: 3.4 σ [1506.00962]
- CMS $VV \rightarrow JJ$: ~ 1 σ [1405.1994]
- CMS $ZV \rightarrow \ell\ell J$: 1.5 σ [1405.3447]
- ► CMS $WH \rightarrow \ell \nu J$: 2.1 σ [CMS-PAS-EXO-14-010]
- CMS jj: ~ 2 σ [1501.04198]
- ► ATLAS *jj*: ~ 1 σ [1407.1376]

Combining searches in a cross-section fit

- ► Combining all 8 TeV searches for resonances in...
 - ▶ WW, ZZ, WZ (semileptonic and hadronic decays)
 - ▶ *WH*, *ZH*
 - ► *jj*, *tb*
- Input data:
 - \blacktriangleright Observed events, expected background in mass window $\sim 1.7 \dots 2.0~\text{TeV}$
 - Acceptance, efficiencies, systematics
- ► Handle with care: some rough approximations
 - Limits and significances can differ from official results

[JB, J. Hewett, J. Kopp, T. Rizzo, J. Tattersall 1507.00013;

see also B. Allanach, B. Gripaios, D. Sutherland 1507.01638]

Fit results: VV

(green area: overall agreement with data at 68% CL)

Fit results: VH, jj, tb

(green area: overall agreement with data at 68% CL)

Fit results: VH, jj, tb

(green area: overall agreement with data at 68% CL)

What do we know can we guess?

► ZZ or WZ excess (WW disfavoured), similarly sized WH peak (ZH disfavoured)

 \Rightarrow boson, likely charged

• $\mathcal{O}(100 \text{ fb})$ production cross section, jj "signal"

 \Rightarrow sizable coupling to quarks or gluons

• Strong $\ell\ell$, $\ell\nu$ limits

 \Rightarrow suppressed leptonic decay mode

Interpretations on the market (1)

- ► Spin 0
 - ► Higgs singlet [C. Chen, T. Nomura 1509.02039]
 - 2HDM [C. Chen, T. Nomura 1507.04431; Y. Omura, K. Tobe, K. Tsumura 1507.05028; W. Chao 1507.05310; D. Sierre, J. Herrero-Garcia, D. Restrepo, A. Vicente 1510.03437]
 - Sparticle [C. Petersson, R. Torre 1508.05632; B. Allanach, P. Bhupal Dev, K. Sakurai 1511.01483]
 - ► Composite scalar [C. Chiang, H. Fukada, M. Ibe, T. Yanagida 1507.02483;
 - G. Cacciapaglia, A. Deandrea, M. Hashimoto 1507.03098]

Interpretations on the market (2)

► Spin 1

- W' [S. Xue 1506.05994; B. Dobrescu, Z. Liu 1506.06736, 1507.01923;
 Y. Gao, T. Ghosh, K. Sinha, J. Yu 1506.07511; JB, J. Hewett, J. Kopp, T. Rizzo,
 J. Tattersall 1507.00013; J. Heeck, S. Patra 1507.01584; P. Bhupal Dev, R. Mohapatra 1508.02277; F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu,
 U. Sarkar 1508.05940; U. Aydemir, D. Minic, C. Sun, T. Takeuchi 1509.01606,
 R. Awasthi, P. Bhupal Dev, M. Mitra 1509.05387; P. Ko, T. Nomura 1510.07872;
 J. Collins, W. Ng 1510.08083; B. Dobrescu, P. Fox 1511.02148]
- Z' [J. Hisano, N. Nagata, Y. Omura 1506.03931; A. Alves, A. Berlin, S. Profumo,
 F. Queiroz 1506.06767; L. Anchordoqui, I. Antoniadis, H. Goldberg, X. Huang, D. Lüst,
 T. Taylor 1507.05299; A. Faraggi, M. Guzzi 1507.07406; T. Li, J. Maxin, V. Mayes,
 D. Nanopoulos 1509.06821; Z. Wang, F. Sage, T. Steele, R. Mann 1511.02531]
- W' + Z' [K. Cheung, W. Keung, P. Tseng, T. Yuan 1506.06064; Q. Cao, B. Yan,
 D. Zhang 1507.00268; T. Abe, R. Nagai, S. Okawa, M. Tanabashi 1507.01185; T. Abe,
 T. Kitahara, M. Nojiri 1507.01681; H. Fukano, S. Matsuzaki, K. Yamawaki 1507.03428;
 T. Appelquist, Y. Bai, J. Ingoldby, M. Piai 1511.05473]

Interpretations on the market (3)

- ▶ Spin 1 (continued)
 - Composite vector [H. Fukano, M. Kurachi, S. Matsuzaki, K. Terashi, K. Yamawaki 1506.03751; D. Franzosi, M. Frandsen, F. Sannino 1506.04392; A. Thamm, R. Torre, A. Wulzer 1506.08688; A. Carmona, A. Delgado, M. Quiròs, J. Santiago 1507.01914; L. Bian, D. Liu, J. Shu 1507.06018; H. Fritzsch 1507.06499; K. Lane, L. Pritchett 1507.07102; M. Low, A. Tesi, L. Wang 1507.07557; H. Fukano, S. Matsuzaki, K. Terashi, K. Yamawaki 1510.08184]
 - Generic / EFT [G. Cacciapaglia, M. Frandsen 1507.00900; B. Allanach, B. Gripaios, D. Sutherland 1507.01638; L. Bian, D. Liu, J. Shu, Y. Zhan 1509.02787;
 - B. Bhattacherjee, P. Byakti, C. Khosa, J. Lahiri, G. Mendiratta 1511.02797]

Interpretations on the market (4)

- Different spins
 - ► Glueballs [V. Sanz 1507.03553]
 - ► Excited composite object [H. Terezawa, M. Yasuè 1508.00172]
 - Generic / EFT [J. Aguilar-Saavedra 1506.06739; D. Kim, K. Kong, H. Lee, S. Park 1507.06312; S. Liew, S. Shirai 1507.08273; P. Arnan, D. Espriu, F. Mescia 1508.00174; S. Fichet, G. von Gersdorff 1508.04814; A. Sajjad 1511.02244]
- No new physics
 - Issues with jet substructure and data-driven background estimation

[D. Gonçalves, F. Krauss, M. Spannowsky 1508.04162]

The Left-Right Symmetric Model

 $\begin{array}{l} SU(2)_L \times SU(2)_R \times U(1)_{B-L} \\ g_L & g_R \\ \kappa = g_R/g_L \end{array}$

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \sim \left(2, 1, \frac{1}{3}\right) & \begin{pmatrix} u \\ d \end{pmatrix}_{R} \sim \left(1, 2, \frac{1}{3}\right) \\ \begin{pmatrix} \nu \\ \ell \end{pmatrix}_{L} \sim \left(2, 1, -1\right) & \begin{pmatrix} N \\ \ell \end{pmatrix}_{R} \sim \left(1, 2, -1\right) \\ \Delta_{L} \sim \left(3, 1, -2\right) & \Delta_{R} \sim \left(1, 3, -2\right) \\ \Phi \sim \left(2, 2, 0\right)$$

[J. Pati, A. Salam 1974; R. Mohapatra, J. Pati 1977;

G. Senjanovic, R. Mohapatra 1975...]

The Left-Right Symmetric Model

$$\begin{array}{cccc} SU(2)_L \times SU(2)_R \times U(1)_{B-L} & \begin{pmatrix} u \\ d \end{pmatrix}_L \sim (2, 1, \frac{1}{3}) & \begin{pmatrix} u \\ d \end{pmatrix}_R \sim (1, 2, \frac{1}{3}) \\ \begin{pmatrix} \nu \\ \ell \end{pmatrix}_L \sim (2, 1, -1) & \begin{pmatrix} N \\ \ell \end{pmatrix}_R \sim (1, 2, -1) \\ \Delta_L \sim (3, 1, -2) & \Delta_R \sim (1, 3, -2) \\ \Phi \sim (2, 2, 0) \\ & & & & \\ SU(2)_L & \times & U(1)_Y \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

W_R phenomenology

• Direct coupling to RH quarks:

• $m_{N_{\ell}} > m_{W_R}$ avoids ℓN_{ℓ} limits

[see also B. Dobrescu, Z. Liu 1506.06736; F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu, U. Sarkar 1508.05940]

Mixing gives diboson modes:

 \rightsquigarrow candidate for 1.9 TeV excesses

Is That It? Fitting the W_R to data

- Same input as before (VV, VH, jj, tb searches)
- Narrow width approximation
- Production cross section based on MMHT2014 NNLO pdfs [1412.3989]

► $W_R \sim 1900$ GeV with coupling $\kappa = g_R/g_L \sim 0.6$ and mixing angle $\sin \phi_w \sim 0.0014$ can explain everything!

Is That It? Fitting the W_R to data

- Same input as before (VV, VH, jj, tb searches)
- Narrow width approximation
- Production cross section based on MMHT2014 NNLO pdfs [1412.3989]

► $W_R \sim 1900$ GeV with coupling $\kappa = g_R/g_L \sim 0.6$ and mixing angle $\sin \phi_w \sim 0.0014$ can explain everything!

Where is the Z_R ?

13 TeV prospects

- ▶ W_R production cross section > 6 times larger than at 8 TeV
- ► Best-fit W_R can be excluded with 5 fb⁻¹ in jj (10 fb⁻¹ in tb, 15 fb⁻¹ in WZ, WH)

13 TeV prospects

- ▶ W_R production cross section > 6 times larger than at 8 TeV
- ► Best-fit W_R can be excluded with 5 fb⁻¹ in jj (10 fb⁻¹ in tb, 15 fb⁻¹ in WZ, WH)
- ▶ First result: ATLAS *jj* with 80 pb⁻¹ [ATLAS-CONF-2015-042]

- ► Different excesses around 1.8...2.0 TeV in VV, VH, jj searches
- Combined fit to all sensitive searches prefers ~ 5 fb signal in WZ and WH, ~ 100 fb in jj
- ► In Left-Right Symmetric Model, W_R at 1.9 TeV can explain all measurements
- ► LHC at 13 TeV will soon be sensitive

Backup

The one (anomaly) that got away

- ► CMS e⁺e⁻ jj: 2.8 σ excess around 2.0 TeV [1407.3683]
- ► Could be W_R → eN → ee W_R → ee jj
 [B. Dobrescu, Z. Liu 1506.06736; F. Deppisch, L. Graf,
 S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu,
 U. Sarkar 1508.05940]
- Issues:
 - ► Only e⁺e⁻, no e[±]e[±] events (unlike expected from Majorana N_ℓ)
 - No peak in m_{e_2jj} distribution
 - Nothing in $\mu\mu jj$ searches
 - Constraints from $\mu \to e \gamma$

ATLAS $VV \rightarrow JJ$

20/30

More di-things

ATLAS combination

[ATLAS-CONF-2015-045]

Fit input

Analysis		Selection	Mass bins [GeV]
ATLAS VV hadronic	[1506.00962]	WW selection	1750 - 2050
ATLAS VV hadronic	[1506.00962]	ZZ selection	1750 - 2050
ATLAS VV hadronic	[1506.00962]	WZ selection	1750 - 2050
CMS VV hadronic	[1405.1994]	Double tagged	1780 - 2030
ATLAS VV, single lepton	[1503.04677]	Merged region	1700 - 2000
CMS VV , single lepton	[1405.3447]	High purity	1700 - 2000
ATLAS VV , double lepton	[1409.6190]	Merged region	1680 - 2060
CMS VV , double lepton	[1405.3447]	High purity	1700 - 2000
CMS $VH \rightarrow b\bar{b} + \nu\ell$	[PAS-EXO-14-010]		1700 - 2000
CMS $VH \rightarrow \tau^+ \tau^- + hadronic V$	[1502.04994]		1500 - 2000
CMS VH hadronic	[1506.01443]	bb selection	1690 - 2030
ATLAS dijet	[1407.1376]		1706 - 2030
CMS dijet	[1501.04198]		1678–1945
ATLAS tb , hadronic t	[1408.0886]	Double tagged	1600 - 2000
ATLAS tb , leptonic t	[1410.4103]		1600 - 2000
CMS tb , leptonic t	[1402.2176]		1500 - 2000

VV searches

Analysis		Excess $[\sigma]$	95% CL _s limits [fb]		
			WW	ZZ	WZ
ATLAS hadronic	[1506.00962]	2.4	20	25	26
CMS hadronic	[1405.1994]	1.0	18	17	18
ATLAS single lepton	[1503.04677]		6		12
CMS single lepton	[1405.3447]		8		17
ATLAS double lepton	[1409.6190]			14	29
CMS double lepton	[1405.3447]	1.5		10	21

$VH\xspace$ searches

Analysis		Excess $[\sigma]$	95% CL WH	s limits [fb]. .s
$\begin{array}{l} {\rm ATLAS} \; b\bar{b} + (\ell\ell,\nu\ell,\nu\nu) \\ {\rm CMS} \; b\bar{b} + \nu\ell \\ {\rm CMS} \; \tau^+\tau^- \; + \; {\rm hadronic \; vector} \\ {\rm CMS \; hadronic} \end{array}$	[1503.08089] [PAS-EXO-14-010] [1502.04994] [1506.01443]	1.9	30 44 36 13	14 32 13
α (pp \rightarrow X) × BR(X \rightarrow HZ) [fb]	5 10 $\sigma(pp \rightarrow X) \times BR(X \rightarrow HW)$	-0.3 -0.2 -0.1 (fb)		

Dijet and tb searches

Analysis		Excess $[\sigma]$	95% CI <i>jj</i>	L _s limits [fb] tb
ATLAS jj	[1407.1376]	1.5	217	
CMS jj	[1501.04198]	1.9	173	
ATLAS tb , hadronic t	[1408.0886]			203
ATLAS tb , leptonic t	[1410.4103]			101
CMS tb , leptonic t	[1402.2176]			67

 $Z_R \rightarrow \ell^+ \ell^-$ at 13 TeV

(dashed lines: $\sim 95\%$ CLs limits after 20, 100 fb⁻¹)

A connection to dark matter? (1)

- a) W_R -mediated DM interactions with SM partners
 - Charged partner χ^+ could be τ
 - DM χ^0 could be N_{τ} (but only if lighter than τ)
 - Hard to get relic density right
- b) W_R -mediated DM interactions with BSM partners
 - New particles χ^0 , χ^+ , with χ^+ slightly heavier
 - Freeze-out through χ^0 - χ^+ co-annihilation
 - Direct and indirect searches probably not sensitive
 - ▶ Potential LHC signatures: $pp \to W_R \to \chi^0 \chi^\pm \to \chi^0 \chi^0 qq'$, $\chi^+ \chi^-$ pair production

A connection to dark matter? (2)

- c) Z- and Z_R -mediated DM interactions
 - ▶ N_{ℓ} DM faces same problems as in W_R -mediated scenario
 - ▶ Alternative: new RH doublet $\chi = (\chi^0, \chi^-) \sim (1, 2, -1)$ with Majorana mass

A connection to dark matter? (3)

- d) Minimal Left-Right DM
 - ▶ New triplets $\chi_L \sim (3, 1, 0)$, $\chi_R \sim (1, 3, 0)$ with common Majorana mass [J. Heeck, S. Patra 1507.01584]
 - \blacktriangleright Electroweak radiative corrections potentially make charged states too light, but safe for $\kappa\sim 0.6$
- e) DM in supersymmetric LRM
 - ► Lightest neutralino is excellent MSSM-like DM candidate