New Physics at the LHC, Bonn, 25 November 2015



# Composite heavy vector triplets in the ATLAS di-boson excess and at future colliders

Andrea Thamm JGU Mainz

in collaboration with R. Torre and A. Wulzer based on arXiv: 1506.08688 and 1502.01701

#### Di-boson excess?



#### Di-boson excess?





- W-fat jet: 69.4 GeV < m < 95.4 GeV
- Z-fat jet: 79.8 GeV < m < 105.8 GeV



- understand observed events and selection overlap
- need tagging efficiencies for a W and Z



• information from ATLAS

 $n_{WW} = 13$   $n_{ZZ} = 9$   $n_{WZ} = 15$   $n_{WW+ZZ} = 17$   $n_{WW+ZZ+WZ} = 17$ 



5 equations 6 unknowns

 overlap regions



• 3 solutions:

ABCDEF $\mathbf{2}$ 6 50 40 1 50  $\mathbf{3}$ 71  $\mathbf{2}$  $\mathbf{5}$ 0 8 0  $\mathbf{2}$ 

# Tagging efficiencies

• assign tagging efficiencies

|                 | W jet tag only | W and $Z$ jet tag | ${\cal Z}$ jet tag only |
|-----------------|----------------|-------------------|-------------------------|
| true $W$        | 0.25           | 0.36              | 0.04                    |
| true ${\cal Z}$ | 0.11           | 0.39              | 0.21                    |



• efficiency of jet invariant mass cuts

| selection region | WW   | WZ   | ZZ   |
|------------------|------|------|------|
| final state      |      |      |      |
| WW               | 0.39 | 0.37 | 0.16 |
| WZ               | 0.33 | 0.44 | 0.25 |
| ZZ               | 0.27 | 0.47 | 0.37 |

• extract signal CS from WZ channel and compare with the others

## Signal cross section



## Other channels



- hadronic channel driving the excess
- other channels very mild/no excess

• combination of WZ channels



#### Bosonic channels at CMS





### Leptonic channels

Median expected

68% expected

95% expected

3000

19.7 fb<sup>-1</sup> (8 TeV)

CMS

3500

M [GeV]

 $Z'_{\Psi}$ 



# Composite Higgs Models

# Composite Higgs Models



heavy resonances expected in the strong sector above  $\Lambda_S$  H no longer elementary d.o.f.  $\longrightarrow$  solves hierarchy problem still large separation between  $\Lambda_{EW}$  and  $\Lambda_S$  which requires some tuning light Higgs present accidentally (e.g. light dilation) or related to longitudinal polarisation of gauge bosons (pNGB)

## Minimal Composite Higgs Models



## Minimal Composite Higgs

partial compositeness:

linear mixing between elementary and composite states

$$\mathcal{L}_{\text{mix}} = \lambda_L \, q_L \mathcal{O}_L^q + \lambda_R \, t_R \mathcal{O}_R^t + \text{h.c.} + g \, A_\mu \mathcal{J}^\mu$$

yields attractive flavour picture

[Csaki, Falkowski, Weiler: arXiv:0804.1954]



## Beyond the Minimal Model

can build larger cosets with additional physical scalars

| G                      | H                                                  | $N_G$ | NGBs rep. $[H] = \text{rep.}[SU(2) \times$                       | $\overline{SU(2)]}$                                                                   |
|------------------------|----------------------------------------------------|-------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| SO(5)                  | SO(4)                                              | 4     | ${f 4}=({f 2},{f 2})$                                            | [Agashe, Contino, Pomarol,]                                                           |
| SO(6)                  | SO(5)                                              | 5     | ${f 5}=({f 1},{f 1})+({f 2},{f 2})$                              | [Gripaios, Pomarol, Riva, Serra 0902.1485]                                            |
| SO(6)                  | $SO(4) \times SO(2)$                               | 8     | ${f 4_{+2}}+{f ar 4_{-2}}=2	imes ({f 2},{f 2})$                  | [Mrazek, Pomarol, Rattazzi, Redi, Serra,<br>Wulzer 1105.54031                         |
| SO(7)                  | SO(6)                                              | 6     | ${f 6}=2	imes ({f 1},{f 1})+({f 2},{f 2})$                       | ·····                                                                                 |
| SO(7)                  | $G_2$                                              | 7     | ${f 7}=({f 1},{f 3})+({f 2},{f 2})$                              | [Chala 1210.6208]                                                                     |
| SO(7)                  | $SO(5) \times SO(2)$                               | 10    | $10_0 = (3, 1) + (1, 3) + (2, 3)$                                | <b>2</b> )                                                                            |
| SO(7)                  | $[SO(3)]^{3}$                                      | 12    | ( <b>2</b> , <b>2</b> , <b>3</b> )=3	imes( <b>2</b> , <b>2</b> ) |                                                                                       |
| $\operatorname{Sp}(6)$ | $\operatorname{Sp}(4) \times \operatorname{SU}(2)$ | 8     | $(4, 2) = 2 \times (2, 2), (2, 2) + 2 \times$                    | ( <b>2</b> , <b>1</b> ) [Mrazek, Pomarol, Rattazzi,<br>Redi, Serra, Wulzer 1105.5403] |
| SU(5)                  | $SU(4) \times U(1)$                                | 8     | $4_{-5} + \bar{4}_{+5} = 2 \times (2, 2)$                        |                                                                                       |
| SU(5)                  | SO(5)                                              | 14    | ${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},$                     | 1)                                                                                    |

larger freedom for fermion representations

## Composite Higgs Model

• predicts direct and indirect effects

• production of EW vector resonances (here consider 3 of  $SU(2)_L$ )

[Pappadopulo, Thamm, Torre, Wulzer: 1402.4431]

• production of top partners light to reproduce  $m_h$ 

[Mrazek, Wulzer: arXiv:0909.3977] [De Simone, Matsedonskyi, Rattazzi, Wulzer: arXiv:1211.5663] • modification of Higgs couplings

$$a = g_{WWh} = \sqrt{1 - \xi} \qquad \qquad \xi = \frac{v^2}{f^2}$$

- EWPT

   (sensitive to effects only computable in specific models)
- Flavour

# Heavy vector triplets

### Heavy vector triplets

- among the most well motivated particles
- appear in composite Higgs models but also in weakly coupled theories
- associated to the EW gauge symmetry
- consider a 3 of  $SU(2)_L$

# Phenomenological Lagrangian

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0})$$

$$+ i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$$

$$+ \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

Weakly coupled model

Strongly coupled model

$$g_V$$
 typical strength of V interactions  
 $g_V \sim g \sim 1$   $1 < g_V \le 4\pi$   
 $c_i$  dimensionless coefficients  
 $c_H \sim -g^2/g_V^2$  and  $c_F \sim 1$   $c_H \sim c_F \sim 1$ 

### Phenomenological Lagrangian

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0}) + i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} + \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

Coupling to SM Vectors



Coupling to SM fermions  $J_F^{\mu \, a} = \sum_f \overline{f}_L \gamma^\mu \tau^a f_L$  f  $V_\mu$  $c_F V \cdot J_F \rightarrow c_l V \cdot J_l + c_q V \cdot J_q + c_3 V \cdot J_3$ 

## Phenomenological Lagrangian

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0}) + i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} + \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

- Couplings among vectors
- do not contribute to V decays
- do not contribute to single production
- only effects through (usually small) VW mixing

• relevant for phenomenology relevant only need  $(c_H, c_F)$ 

#### Production rates

• DY and VBF production



- can compute production rates analytically!
- easily rescale to different points in parameter space



## Decay widths

relevant decay channels: di-lepton, di-quark, di-boson •

$$\begin{split} \Gamma_{V_{\pm} \to f \overline{f}'} &\simeq 2 \, \Gamma_{V_0 \to f \overline{f}} \simeq N_c[f] \, \left( \frac{g^2 c_F}{g_V} \right)^2 \frac{M_V}{96\pi} \,, \\ \Gamma_{V_0 \to W_L^+ W_L^-} &\simeq \Gamma_{V_{\pm} \to W_L^\pm Z_L} &\simeq \frac{g_V^2 c_H^2 M_V}{192\pi} \left[ 1 + \mathcal{O}(\zeta^2) \right] \\ \Gamma_{V_0 \to Z_L h} &\simeq \Gamma_{V_{\pm} \to W_L^\pm h} &\simeq \frac{g_V^2 c_H^2 M_V}{192\pi} \left[ 1 + \mathcal{O}(\zeta^2) \right] \end{split}$$

 $g_V c_H \simeq -g_V$ ,  $g^2 c_F / g_V \simeq g^2 / g_V$ 





- excluded for masses < 1.5 TeV, unconstrained for larger  $g_V$
- di-boson most stringent
- in excluded region  $G_F$ ,  $m_Z$  not reproduced

## Heavy vector triplets in the di-boson excess

## LHC bounds



- similar exclusions at low  $g_V$ , leptonic final state dominates
- very different for larger coupling
- weaker limits if decay to top partners open

[Greco, Liu: arXiv:1410.2883] [Chala, Juknevich, Perez, Santiago: arXiv:1411.1771]

## LHC bounds

• compare with weakly coupled vectors

yellow: CMS  $l^+\nu$  analysis dark blue: CMS  $WZ \rightarrow 3l\nu$ light blue: CMS  $WZ \rightarrow jj$ black: bounds from EWPT



strongly coupled vectors have weaker bounds

## Composite HVT signal cross section

• neutral and charged components contribute to the various selection regions

 $S_{WZ} = \mathcal{L} \times \mathcal{A} \times \left[ (\sigma \times BR)_{V^{\pm}} BR_{WZ \to had} \epsilon_{WZ \to WZ} + (\sigma \times BR)_{V^{0}} BR_{WW \to had} \epsilon_{WW \to WZ} \right]$ 

• Once we fix the mass there is only one parameter  $g_V$ 



## Compatibility with other searches



[Thamm, Torre, Wulzer, arXiv:1506.08688]

## Implications for the MCHM

• fixing the parameters



- expect top partners below 2 TeV (current limits up to ~0.7 TeV)
- need to include decay into top partners
- need a new effective theory which includes new heavy states
- measure couplings of new states
- expect deviation in Higgs couplings  $g_{WWh} \sim 0.93 \text{ instead of } 1$

## Implications for the MCHM

• fixing the parameters



- from CH perspective: very plausible
- very close to what we expect
- for now, only some fluctuations
- maybe exactly what a 2 TeV resonance should look like
- very soon, we will know more!

## Heavy vector triplets at future colliders

### Limit extrapolation



assume: excluded signal is only a function of number of background events

background rescales with parton luminosities

$$B(s, L, m_{\rho}) \propto L \cdot \sum_{\{i, j\}} \int d\hat{s} \frac{1}{\hat{s}} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (\sqrt{\hat{s}}; \sqrt{s}) \left[\hat{s}\hat{\sigma}_{ij}\left(\hat{s}\right)\right]$$

20

identify relevant background process

[Thamm, Torre, Wulzer: 1502.01701]

40

CTEQ6.6M ( $\mu^2 = \hat{s}$ )

30

 $\sqrt{\hat{s}} = M_V [\text{TeV}]$ 

 $u_i \overline{d}_i (V^+)$ 

 $u_i \overline{u}_j (V^0)$ 

 $d_i \overline{d}_j (V^0)$ 

 $d_i \overline{u}_i (V^-)$ 

 $L_0$  $L_1$ 

50

### Limit extrapolation - assumptions

- limit only driven by background for a cut-and-count experiment of events within narrow window
- shape analyses depend on background and signal kinematical distributions
- however, no large deviations expected

#### Limit extrapolation

current 8 TeV LHC limits and extrapolated bounds



#### Indirect measurements



#### Indirect measurements



### Indirect measurements

| Collider | Energy               | Luminosity           | $\xi \ [1\sigma]$                 |
|----------|----------------------|----------------------|-----------------------------------|
| LHC      | $14\mathrm{TeV}$     | $300  {\rm fb}^{-1}$ | $6.6 - 11.4 \times 10^{-2}$       |
| LHC      | $14\mathrm{TeV}$     | $3 \mathrm{ab}^{-1}$ | $4-10\times 10^{-2}$              |
| ILC      | $250\mathrm{GeV}$    | $250  {\rm fb}^{-1}$ | $4.8 \text{-} 7.8 \times 10^{-3}$ |
|          | + 500 GeV            | 500 fb 1             |                                   |
| CLIC     | $350{ m GeV}$        | $500  {\rm fb}^{-1}$ | 2                                 |
|          | $+ 1.4 \mathrm{TeV}$ | $1.5  {\rm ab}^{-1}$ | $2.2 \times 10^{-3}$              |
|          | + 3.0 TeV            | $2 \mathrm{ab}^{-1}$ |                                   |
| TLEP     | $240{ m GeV}$        | $10  {\rm ab}^{-1}$  | $2 \times 10^{-3}$                |
|          | $+ 350 \mathrm{GeV}$ | $2.6  {\rm ab}^{-1}$ | 2 / 10                            |

[CMS-NOTE-2012-006] [ATL-PHYS-PUB-2013-014] [Dawson et. al.1310.8361] [CLIC 1307.5288]

#### Results in $(m_{\rho}, g_{\rho})$



95% C.L.

- theoretically excluded  $\xi \leq 1$
- LHC8 at 8 TeV with 20 fb<sup>-1</sup>
   LHC at 14 TeV with 300 fb<sup>-1</sup>
   HL-LHC at 14 TeV with 3 ab<sup>-1</sup>
- di-leptons more sensitive for small  $g_{\rho}$
- di-boson more sensitive for large  $g_{\rho}$
- increase in  $\sqrt{s}$  : improves mass reach
- increase in L: improves  $g_{\rho}$  reach
- resonances too broad for large  $g_{\rho}$

[Thamm, Torre, Wulzer: 1502.01701]

#### Results in $(m_{\rho}, g_{\rho})$



- theoretically excluded  $\xi \leq 1$
- LHC8 at 8 TeV with 20 fb<sup>-1</sup>
   HL-LHC at 14 TeV with 3 ab<sup>-1</sup>
- direct: more effective for small  $g_{\rho}$ ineffective for large  $g_{\rho}$
- indirect: more effective for large  $g_{\rho}$

[Thamm, Torre, Wulzer: 1502.01701]

### Results in $(m_{\rho}, \xi)$



- theoretically excluded  $1 \le g_{\rho} \le 4\pi$
- LHC8 at 8 TeV with 20 fb<sup>-1</sup>
   LHC at 14 TeV with 300 fb<sup>-1</sup>
   HL-LHC at 14 TeV with 3 ab<sup>-1</sup>

[Thamm, Torre, Wulzer: 1502.01701]

### Results in $(m_{\rho}, \xi)$



- theoretically excluded  $1 \le g_{\rho} \le 4\pi$
- LHC8 at 8 TeV with 20 fb<sup>-1</sup>
   HL-LHC at 14 TeV with 3 ab<sup>-1</sup>

<sup>[</sup>Thamm, Torre, Wulzer: 1502.01701]

## Conclusions

- Composite Higgs models provide a very compelling framework
  - resonance at ~few TeV expected
- excess
  - \* maybe exactly what a resonance at the verge of discovery should look like?
  - learn much more from LHC Run II
- if not: many other ways to look for compositeness
  - direct: vector resonance and top partners
  - indirect: coupling modifications
- LHC probes only small region of parameter space
  - could learn a lot from future collider!