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Physics Highlight 2016
2

LIGO announces first
direct observation of
Gravitational Waves



LIGO

Hanford, Washington, USA



Signal

http://www.black-holes.org/sound/Inspiral.wav


Great! 

But why should  
we (particle physicists) care?



Outline

• The GW Soundscape 

• GWs as windows into the early universe 

• Signal from a dark (matter) sector PT 

• GWs from massive compact (DM) objects 

• Constraining DM interactions with GW expts
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Ligo is not the only 
game in town
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eLISA: 2028/2032

Pulsar timing arrays
Data already available

Ground based

*

*From A. Petiteau 
This is now realistic thanks to  
the success of Pathfinder!



GWs as window into 
the early universe



Thermal History
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Thermal History
11

GWs are unique direct messengers from
this era! 



But also difficult to detect 

need a strong signal!



Cosmological Phase Transitions
• Early Universe in symmetric phase (e.g. unbroken 

electroweak symmetry)

13

T > TcT < Tc T < Tc

Second  
order

First 
order



GWs from PTs
14

First order PT ➞ Bubbles nucleate, expand

Bubble collisions ➞ Gravitational Waves



Signal is Universal
• PT characterised by few parameters: 

• Latent heat 

• Bubble wall velocity 

• Bubble nucleation rate 

• PT temperature 

• Three physical contributions 
• Bubble wall collisions 

• Turbulence 

• Sound waves

15

Extensive numerical 
simulations. Recently e.g.  
Hindmarsh et al: 
Sound wave contributions

Phenomenological 
Parameterisations:

Caprini et al, 1512.06239
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FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.

W ϵ, contracting [∂µT µν ]
fluid

with Uν yields

Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
∂V

∂φ
W (φ̇+ V i∂iφ)

= ηW 2(φ̇+ V i∂iφ)
2. (5)

The equations of motion for the fluid momentum density
Zi = W (ϵ+ p)Ui read

Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ϵ+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power

spectrum per logarithmic frequency interval is

dρGW(k)

d ln k
=

1

32πGL3

k3

(2π)3

∫

dΩ
∣

∣

∣
ḣlm(t,k)

∣

∣

∣

2

. (8)

We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw ≃
0.71, and the others weak deflagrations with vw ≃ 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw ≃ 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities



GW signal
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Peak Frequency
• Redshift:  

• Peak regions:
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and gi counts the internal degrees of freedom of the i-th particle. It follows that the frequency
today can be expressed as

f =
a⇤
a
0

H⇤
f⇤
H⇤

= 1.59⇥ 10�7 Hz⇥
⇣ g⇤
80
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H⇤
, (3)

where we have used the Hubble rate at time of production, H⇤ =
q

4⇡3g⇤
45

T 2
⇤

MPl
, and assumed that

all species are in thermal equilibrium at T = T⇤, i.e. g⇤ = g⇤,s. For the fraction of energy density
in gravitational waves today we similarly obtain

⌦
GW

=
⇢

⇢
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=
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a
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◆
4 H2

⇤
H2

0

⌦⇤GW
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80
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◆ 1
3

⌦⇤GW

, (4)

where we used that ⇢
crit

/⇢⇤crit = H2

0

/H2

⇤ and H
0

= 2.13⇥ h⇥ 10�42 GeV. It is noteworthy that
the intensity of the GW signal is independent of the production temperature T⇤ (except for the
implicit dependence of g⇤ on T⇤).

The most sensitive frequency regions of pulsar timing arrays and satellite based experiments
are in the nano-Hz and milli-Hz range, respectively. To get an idea about the detectability of
GWs from a strong dark PT we will therefore need to understand the spectrum of the produced
GWs. For this, we will closely follow the discussion of [26].

Gravitational Waves are sourced by tensor fluctuations of the energy momentum tensor of
the primordial plasma. During first order phase transitions both bubble collisions [61,62] and
magnetohydrodynamical (MHD) turbulence [63–66] provide sources of gravitational waves. As
functions of the conformal wave number k = 2⇡af , the GW spectra produced by either source
can be approximated by [26]

d⌦(B)

GW

h2

d log k
' 2

3⇡
h2⌦r0
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�

◆
2
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S⇤v
3
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, (5)

d⌦(MHD)

GW

h2

d log k
' 8

⇡6

h2⌦r0

✓
H⇤
�

◆
⌦3/2
S⇤ v

4

(k/�)3

(1 + 4k/H⇤) (1 + (v/⇡2)(k/�))11/3
. (6)

Eqn. (5) is based on [67,68] while Eqn. (6) is a fit to the numerical results of [69]. Here H⇤ is
the conformal Hubble parameter H = Ha at T = T⇤, and ⌦r0 is the radiation energy density
today. The quantities that determine the GW spectrum are the bubble nucleation rate � (the
duration of the PT is ��1), the bubble velocity v and the relative energy density in the source,
⌦S⇤ = ⇢S⇤/⇢⇤,crit = ⌦⇤GW

. Dependence on the temperature of the PT enters through the
dependence of H⇤ on T⇤.

The duration of the PT is usually taken as (1 � 10)% of a Hubble time, and therefore
� = (10 � 100)H [2]. To understand the relation with the physical frequency, remember that
the conformal frequency is related to the conformal wave number via af = k/(2⇡). Furthermore
using H = Ha we see that f⇤/H⇤ = F⇤/H⇤ = (k/H⇤)/(2⇡), which together with Eqn. (3) allows
us to translate the GW spectra into physical frequencies.

In a given theory, the dynamics of the phase transition, and therefore the parameters �, v
and ⌦S⇤ are in principle calculable. For the strongly coupled models considered here they are
however not known, and can only be estimated using lattice simulations. We will therefore take
� and v as additional input parameters, with values motivated by results of analyses in weakly
coupled models.

Following [26], we will use ⌦S⇤ = 0.1 and � = 10H⇤, but v = 1.0 instead of 0.7. We are now in
a position to study the location of the peaks of the GW signals from bubble collisions and MHD
turbulence. The bubble collision signal is triangular shaped with a maximum at k/� = 4

p
3 ⇡ 1.3,
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k/� ⇡ (1� 10)
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Figure 2: Left: Peak frequencies of the GW spectra (in mHz) from bubble collisions (blue,solid)
and MHD turbulence (red, dashed) in the T⇤ � � plane, for v = 1.0. Right: GW spectrum from
bubble collisions (blue, solid) and turbulence (red, dashed) as well as the combined spectrum
(black, thick), as a function of conformal wave number k, for v = 1.0 and � = 10H⇤.

while the MHD turbulence peaks at somewhat larger wave numbers k/� ⇡ ⇡2/v. To obtain
physical frequencies, we use Eqn. (3) and f⇤/H⇤ = (�/(2⇡H))(k/�). Then the peak locations are

f
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80

⌘ 1
6
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◆✓
�
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◆
, f

(MHD)

peak

⇡ 10f (B)

peak

. (7)

In Fig. 2 we show the location of the frequency peaks as function of the PT temperature T⇤
and �. As expected from Eqn. (3), the peak frequencies increase linearly with the transition
temperature T⇤ and with �/H⇤.

The source term ⌦S⇤ can be di↵erent for bubble collision and turbulence. Here we will assume
that equal amounts of energy act as source for ⌦(B)

GW

and ⌦(MHD)

GW

. In this case the turbulence
signal dominates over the one from bubble collisions over most of the relevant frequency range,
see Fig. 2. The intensity of both signals decreases as (�/H⇤)�2, therefore smaller values of �
are preferable. From Eqn. (6) it might appear that the turbulence signal only decreases as ��1,
however the k/H⇤ term in the denominator gives another power of H⇤/� for k & 1.

Recent simulations of first order PTs suggest that sound waves generated by the expansion
of bubbles could be the dominant source of GWs from these transitions [70–72]. Sound waves
continue propagating through the early universe after the PT is finished, and decay on a timescale
H⇤. Compared to the above discussed spectra, they will therefore not be suppressed as much by
the velocity of the transition �, and the signal could be increased by a factor (�/H⇤) compared
to the bubble collision signal, but with a spectrum decaying as k�3. This could potentially boost
the signal, in particular for cases where the PT is fast, i.e. �/H � 1.

4 Detectability

In the previous section, we have seen that the peak frequencies of GW signals from GeV-TeV
scale PTs are of order (10�6 � 10�3) Hz. Furthermore it is important to note that a broad
spectral region around the peak is populated by GWs, from (10�10 � 1) Hz.

6

PT Temperature
~ DM Mass



Example: Strong EWPT
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SM: PTs are weak 

PT in a dark sector? 



Composite DM
• Alternative to elementary WIMP models 

• Phenomenologically viable, “generic” possibility in 
presence of hidden sectors 

• Some nice features: 
• DM stability, mass scale 

• Symmetric component annihilation for ADM 

• Self-interactions

20



Dark QCD
• Models I’m interested in here: 

• Nonabelian SU(N) dark sector, confinement scale 

•       light/massless flavours

21

⇤d

nf

nf = 0 nf > 0

Glueball DM 
 

PT from center 
symmetry restoration

Dark Baryons  
or Dark Pions 

Chiral Symmetry Breaking



The Dark Phase 
Transition



Phase Transition
• SU(N) dark sectors well motivated 

• Confinement/chiral symmetry breaking phase 
transition at scale  
‣ DM:                      (MeV - 100 TeV) 

‣ Naturalness:   

• First order PT in large class of models 

• Still possible if LHC finds no new physics 

23

⇤d

⇤d ⇠ MDM

⇤d ⇠ few ⇥ ⇤QCD



QCD Phase Diagram
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Figure 1: Phase diagram of QCD at zero chemical potential (schematic). The dashed region
represents our current lack of knowledge about the order of the PT in the limit of two massless
flavours.

chemical potential could be su�cient to provide a strong first order PT [25]. The resulting signal
was studied in [26].

The aim of this work is to point out that gravitational waves could also be produced by a
strong PT in a dark or hidden sector. The particular scenario we have in mind is a dark sector
with a new SU(Nd) gauge interaction which confines at some scale ⇤d. Such models have recently
received renewed interest either as models of dark matter [27–42] or as part of the low energy
sector of so called Twin Higgs models [43–48]. Di↵erent from generic hidden sectors [49], these
models provide a preferred mass range and some restrictions on the particle content, such that
the frequency range of the potential GW signal can be predicted.

Given that the SM QCD transition is not first order, we will review the known results on the
order of the PT in strongly coupled gauge theories in the next section, followed by a discussion of
models that fall into this category. In Sec. 3 we calculate the GW spectra that can be produced
in these models, and compare them to the sensitivity of current and planned GW detection
experiments in Sec. 4. We discuss the complementarity of GW experiments with other searches
for dark sectors in Sec. 5, before presenting our conclusions.

2 Models with First Order Phase Transition

Near the QCD confinement scale ⇤
QCD

, the dynamics of QCD is governed by three flavours,
two of which are almost massless, while the strange quark mass is of order ⇤

QCD

. Lattice
studies [5, 6, 50] have shown that for these values of the quark masses, the QCD PT is a weak
cross-over.

However this is not a generic result for QCD and similar theories, but more a consequence
of the precise values of mu ⇡ md and ms in the SM. The QCD phase diagram for arbitrary
mu,d and ms can be summarised in the so called Columbia plot, which is reproduced in Fig. 1,
based on [51]. The pure Yang-Mills limit mu,d,ms ! 1 is known to have a strong first order
PT [52] from the restoration of a global Z

3

center symmetry at low temperatures. The opposite
mu,d,ms ! 0 limit, i.e. theories with three exactly massless quarks, also feature a strong first
order transition, related to the breakdown of the SU(3)⇥ SU(3) chiral symmetry [53].

2



Phase Diagram II
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Figure 1: Phase diagram of QCD at zero chemical potential (schematic). The dashed region
represents our current lack of knowledge about the order of the PT in the limit of two massless
flavours.

chemical potential could be su�cient to provide a strong first order PT [25]. The resulting signal
was studied in [26].

The aim of this work is to point out that gravitational waves could also be produced by a
strong PT in a dark or hidden sector. The particular scenario we have in mind is a dark sector
with a new SU(Nd) gauge interaction which confines at some scale ⇤d. Such models have recently
received renewed interest either as models of dark matter [27–42] or as part of the low energy
sector of so called Twin Higgs models [43–48]. Di↵erent from generic hidden sectors [49], these
models provide a preferred mass range and some restrictions on the particle content, such that
the frequency range of the potential GW signal can be predicted.

Given that the SM QCD transition is not first order, we will review the known results on the
order of the PT in strongly coupled gauge theories in the next section, followed by a discussion of
models that fall into this category. In Sec. 3 we calculate the GW spectra that can be produced
in these models, and compare them to the sensitivity of current and planned GW detection
experiments in Sec. 4. We discuss the complementarity of GW experiments with other searches
for dark sectors in Sec. 5, before presenting our conclusions.

2 Models with First Order Phase Transition

Near the QCD confinement scale ⇤
QCD

, the dynamics of QCD is governed by three flavours,
two of which are almost massless, while the strange quark mass is of order ⇤

QCD

. Lattice
studies [5, 6, 50] have shown that for these values of the quark masses, the QCD PT is a weak
cross-over.

However this is not a generic result for QCD and similar theories, but more a consequence
of the precise values of mu ⇡ md and ms in the SM. The QCD phase diagram for arbitrary
mu,d and ms can be summarised in the so called Columbia plot, which is reproduced in Fig. 1,
based on [51]. The pure Yang-Mills limit mu,d,ms ! 1 is known to have a strong first order
PT [52] from the restoration of a global Z

3

center symmetry at low temperatures. The opposite
mu,d,ms ! 0 limit, i.e. theories with three exactly massless quarks, also feature a strong first
order transition, related to the breakdown of the SU(3)⇥ SU(3) chiral symmetry [53].
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Fraternal 
Twin Higgs

Dark QCD
SIMP models 

Glueball DM

PS, 2016



SU(N) - PT
• Consider              with      massless flavours  

• PT is first order for  
‣               , 

‣               , 

• Not for: 
‣               (no global symmetry, no PT) 

‣               (not yet known) 

26

SU(Nd) nf

Nd � 3 nf = 0 Svetitsky, Yaffe, 1982
M. Panero, 2009

Nd � 3 3  nf < 4Nd Pisarski, Wilczek, 1983

nf = 1

nf = 2



Models span full mass range: 

few 100 MeV (SIMP) to 
  

~100 TeV (strong annihilation, 
saturating unitarity bound) 
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GWs from Exotic 
Compact Objects (ECO)



Exotic Compact Objects
• Two SM objects can produce binary inspiral signal: 

• Black Holes 

• Neutron Stars 

• Dark sector particles may form ECOs: 
• boson stars (e.g. axions) 

• fermion stars 

• DM stars 

31

based on Giudice, Mccullough, Urbano, 2016



Characteristics
• LIGO: Wave-form gives information about masses 

and radii 

• Mass: 
• Neutron stars 

• Any heavier objects must be a BH (in SM) 

• Compactness: 
• Black hole has                 , NS are below 1/4 typically 

32

underlying physics motivation or theory implementation.
From the astrophysical point of view, ECOs present some universal properties, behaving

as collisionless bodies in the same way as stars. If they do not emit significant electro-
magnetic radiation, they escape most astronomical searches. The strongest observational
constraints arise from microlensing events, where light from a distant source is distorted
whenever a compact object passes near the line of sight. This creates unresolved multiple
images observable as an amplification. These searches have been performed for the broad
class of Massive Compact Halo Objects (MACHOs) and apply to the ECOs considered here.
It has been determined that compact objects in the mass range 0.6⇥10�7 M� < M < 15 M�
cannot be the primary component of the Milky Way halo and, for M < 10 M� can comprise
at most 20% of the dark matter mass [28, 29]. This is a very powerful result from the per-
spective of dark matter, but it shows that ECOs may be numerous and may well account
for as much matter as is observed in the form of baryons.

2.1 Conventional Compact Objects

Before discussing ECOs and the way to distinguish them from known astrophysical compact
objects, such as black holes (BH) and neutron stars (NS), it is useful to review briefly the
most relevant features of the “background” to our “new-physics signal” (to use particle
physics terminology).

NS are the supernova remnant of massive stars in which electrons disappear through
inverse � decay. The gravitational attraction is balanced by the Fermi pressure of degenerate
neutrons. The maximum NS mass depends on unknown parameters in the equation of state
(EoS). However, robust upper limits on NS masses can be derived, independently of the
EoS, from basic dynamical assumptions such as the Oppenheimer-Volko↵ equation and the
causality condition that the speed of sound is less than the speed of light. In this way, one
obtains the following upper limits on NS masses:

M < 3.2 M� Rhoades-Ru�ni limit [30]

M < 3.6 M� Nauenberg-Chapline limit [31]. (1)

These limits are derived for non-spinning NS, and the rotation e↵ect increases the maximum
mass by at most 20%, leading to M < 4.3 M�. However, these are theoretical upper bounds.
The most massive NS ever observed is PSR J0348+0432 with M = 2.01 ± 0.04 M� [32].
Numerical NS models with realistic EoS can hardly exceed values about 2M�. These upper
bounds on NS masses allow one to distinguish NS from BH in GW events: for conventional
forms of matter, any compact object of mass larger than about 3–4 solar masses must be a
BH.

Another important parameter that di↵erentiates NS from BH is compactness, defined as
the ratio between an object’s mass and radius. For non-rotating BH, compactness is given
by

C ⌘ M

R
=

1

2
(for BH). (2)

For NS, an absolute upper bound on compactness, independent of the EoS, is given
by [33, 34]

C ⌘ M

R
<

4

9
, (for NS), (3)

4

C = M/R

based on Giudice, Mccullough, Urbano, 2016

C = 1/2



ECOs
• Free field boson stars  

• Self-interacting boson stars

33

which can be saturated for an incompressible star with uniform density. A more stringent
upper bound, although dependent on EoS assumptions, has been obtained by Lindblom [35]:
M/R < 0.35. However, with realistic assumptions on the EoS, one finds that the typical
range of NS compactness is 0.13 <⇠ M/R <⇠ 0.23 [36, 37].

We see that, as in the case of the mass distribution, also for compactness there is a
gap between the NS and BH range. This is another important element to distinguish NS
from BH in GW signals. Indeed, as the stars in the binary approach each other during the
inspiral phase at distances comparable to R, the EoS starts to influence the GW emission.
In particular, the tidal deformations in NS binaries modify the orbital evolution and leave a
signature in the transition between inspiral and merger phases [38].

2.2 Boson Stars

Boson stars (for reviews, see [39, 40, 41, 119]) are often considered as a template for exotic
stars because of the relative simplicity of the equations that govern their dynamics and the
richness in the physical phenomena that they can exhibit. After the discovery of the Higgs
boson and the ascent of the inflaton as a crucial ingredient of cosmological theories, the
reasons for new scalar fields have been strengthened significantly. Boson stars may not be
just an academic exercise, but part of our universe.

There is no lack of theories in which new bosonic degrees of freedom find a natural
setting. Examples are the axion as a solution of the strong CP problem, flat directions in
supersymmetric models, moduli in string theory, a variety of pseudo-Goldstone bosons, new
light vector fields, or dark matter candidates in di↵erent contexts.

The gravitational pull in a boson star is neither supported by thermal pressure (as in
luminous stars) nor Fermi degeneracy (as in white dwarfs or NS). Its stability is provided by
the quantum property that particles cannot be localised beneath distances of the order of
their Compton wavelength. Indeed, the Heisenberg principle dictates that the localisation
length R of a particle with mass mB and momentum p = mBc must satisfy R > ~/(mBc).
When this limit is saturated for the smallest Kepler orbit before gravitational collapse (given
by 3RS, where RS = 2GNM/c2 is the Schwarzschild radius), we find that the maximum mass
of a boson star is about Mmax ⇡ M2

P/mB, where MP is the Planck mass. This shows that
a boson star is a macroscopic quantum object that e↵ectively behaves like a Bose-Einstein
condensate of astronomical size.

The above estimate of the largest mass of a boson star is in good agreement with the
solution of the general relativistic equations, which give [43]

Mmax = 0.633
M2

P

mB
⇡

✓
10�10 eV

mB

◆
M� (for free-field boson stars). (4)

This shows that GW signals from solar mass-scale objects are observable by LIGO for ex-
tremely light boson fields. The correct range of masses can be obtained in the case of the
QCD axion, for an axion decay constant in the range of GUT or string scales, and in a
variety of models of axion-like particles involving new physics. Recently it has also been
shown that boson stars may also form out of massive vector fields [44], although we do not
consider this case here.
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The result in eq. (4) changes completely as soon as new forces come into the game. For
instance, let us include a quartic coupling in the potential V for the complex boson field �,

V (�) = m2
B|�|2 +

�

2
|�|4. (5)

This gives a repulsive self-interaction that acts as an extra source of pressure against gravi-
tational collapse. The maximum mass of this self-interacting boson star is [45]
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10 M� (for self-interacting boson stars). (6)

The value of Mmax is now parametrically equal to the Chandrasekhar mass corresponding
to a constituent fermion of mass mB/�

1/4. The result in eq. (6) suggests that GW relevant
for LIGO may be obtained, in the self-interacting case, for values of mB in the MeV to GeV
range.

An alternative mechanism to stabilise a boson star is through non-topological solitons [46,
47, 48, 49]. Unlike topological solitons (such as magnetic monopoles [50, 51]) which have
non-trivial asymptotic configurations at spatial infinity di↵erent from the ordinary vacuum
state, non-topological solitons are localised solutions of the equations of motion with trivial
asymptotic behaviour. The existence of such solutions for a scalar field is possible in the
presence of a conserved charge Q. In practice, a lump of bosons with large Q can be stable
if its energy per unit charge decreases at larger Q, so that the bound state is energetically
favoured with respect to isolated charges. Such lumps, called Q-balls, are stable and localised
even in the absence of gravity.

Once gravity is included, one obtains a maximum mass for the corresponding star. The
result depends on the form of the potential that is used to obtain the non-topological soli-
ton. For instance for a scalar field with mass mB and condensate �0, one finds Mmax ⇡
M4

P/(mB�
2
0) for the potential used in ref. [52, 53, 54] and Mmax ⇡ M3

P/�
2
0 for Q-stars [55].

Thus, it is possible for Q-balls to reach tens of solar masses and high densities. The exis-
tence of macroscopic Q-balls is common in a variety of new-physics models with scalar fields
that carry a conserved quantum number and develop a condensate. In particular, this can
happen in supersymmetric models, in which the scalar field corresponds to a flat direction
and the conserved charge could be lepton number, baryon number, or a combination of the
two [56, 57].

In the case of the quartic self-interaction, it is found [58] that the maximum compactness
grows with the coupling constant � and saturates at strong coupling at the value

(M/R)max = 0.16 (for self-interacting boson stars). (7)

In the non-interacting case, the general relativistic solutions give a continuous profile for
the scalar field and boson stars do not have a well defined surface. Nonetheless, one can
define an e↵ective radius of the star as the distance that envelops an appropriate fraction of
the total mass (usually taken to be 99%). With this definition, it is possible to compute the
e↵ective compactness of a boson star and one finds

(M/R)max = 0.08 (for free-field boson stars). (8)

Eq. (7) places the maximum compactness of self-interacting boson stars in the same
ballpark of NS.
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which can be saturated for an incompressible star with uniform density. A more stringent
upper bound, although dependent on EoS assumptions, has been obtained by Lindblom [35]:
M/R < 0.35. However, with realistic assumptions on the EoS, one finds that the typical
range of NS compactness is 0.13 <⇠ M/R <⇠ 0.23 [36, 37].

We see that, as in the case of the mass distribution, also for compactness there is a
gap between the NS and BH range. This is another important element to distinguish NS
from BH in GW signals. Indeed, as the stars in the binary approach each other during the
inspiral phase at distances comparable to R, the EoS starts to influence the GW emission.
In particular, the tidal deformations in NS binaries modify the orbital evolution and leave a
signature in the transition between inspiral and merger phases [38].

2.2 Boson Stars

Boson stars (for reviews, see [39, 40, 41, 119]) are often considered as a template for exotic
stars because of the relative simplicity of the equations that govern their dynamics and the
richness in the physical phenomena that they can exhibit. After the discovery of the Higgs
boson and the ascent of the inflaton as a crucial ingredient of cosmological theories, the
reasons for new scalar fields have been strengthened significantly. Boson stars may not be
just an academic exercise, but part of our universe.

There is no lack of theories in which new bosonic degrees of freedom find a natural
setting. Examples are the axion as a solution of the strong CP problem, flat directions in
supersymmetric models, moduli in string theory, a variety of pseudo-Goldstone bosons, new
light vector fields, or dark matter candidates in di↵erent contexts.

The gravitational pull in a boson star is neither supported by thermal pressure (as in
luminous stars) nor Fermi degeneracy (as in white dwarfs or NS). Its stability is provided by
the quantum property that particles cannot be localised beneath distances of the order of
their Compton wavelength. Indeed, the Heisenberg principle dictates that the localisation
length R of a particle with mass mB and momentum p = mBc must satisfy R > ~/(mBc).
When this limit is saturated for the smallest Kepler orbit before gravitational collapse (given
by 3RS, where RS = 2GNM/c2 is the Schwarzschild radius), we find that the maximum mass
of a boson star is about Mmax ⇡ M2

P/mB, where MP is the Planck mass. This shows that
a boson star is a macroscopic quantum object that e↵ectively behaves like a Bose-Einstein
condensate of astronomical size.

The above estimate of the largest mass of a boson star is in good agreement with the
solution of the general relativistic equations, which give [43]
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tremely light boson fields. The correct range of masses can be obtained in the case of the
QCD axion, for an axion decay constant in the range of GUT or string scales, and in a
variety of models of axion-like particles involving new physics. Recently it has also been
shown that boson stars may also form out of massive vector fields [44], although we do not
consider this case here.
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instance, let us include a quartic coupling in the potential V for the complex boson field �,
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This gives a repulsive self-interaction that acts as an extra source of pressure against gravi-
tational collapse. The maximum mass of this self-interacting boson star is [45]
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The value of Mmax is now parametrically equal to the Chandrasekhar mass corresponding
to a constituent fermion of mass mB/�

1/4. The result in eq. (6) suggests that GW relevant
for LIGO may be obtained, in the self-interacting case, for values of mB in the MeV to GeV
range.

An alternative mechanism to stabilise a boson star is through non-topological solitons [46,
47, 48, 49]. Unlike topological solitons (such as magnetic monopoles [50, 51]) which have
non-trivial asymptotic configurations at spatial infinity di↵erent from the ordinary vacuum
state, non-topological solitons are localised solutions of the equations of motion with trivial
asymptotic behaviour. The existence of such solutions for a scalar field is possible in the
presence of a conserved charge Q. In practice, a lump of bosons with large Q can be stable
if its energy per unit charge decreases at larger Q, so that the bound state is energetically
favoured with respect to isolated charges. Such lumps, called Q-balls, are stable and localised
even in the absence of gravity.

Once gravity is included, one obtains a maximum mass for the corresponding star. The
result depends on the form of the potential that is used to obtain the non-topological soli-
ton. For instance for a scalar field with mass mB and condensate �0, one finds Mmax ⇡
M4

P/(mB�
2
0) for the potential used in ref. [52, 53, 54] and Mmax ⇡ M3

P/�
2
0 for Q-stars [55].

Thus, it is possible for Q-balls to reach tens of solar masses and high densities. The exis-
tence of macroscopic Q-balls is common in a variety of new-physics models with scalar fields
that carry a conserved quantum number and develop a condensate. In particular, this can
happen in supersymmetric models, in which the scalar field corresponds to a flat direction
and the conserved charge could be lepton number, baryon number, or a combination of the
two [56, 57].

In the case of the quartic self-interaction, it is found [58] that the maximum compactness
grows with the coupling constant � and saturates at strong coupling at the value

(M/R)max = 0.16 (for self-interacting boson stars). (7)

In the non-interacting case, the general relativistic solutions give a continuous profile for
the scalar field and boson stars do not have a well defined surface. Nonetheless, one can
define an e↵ective radius of the star as the distance that envelops an appropriate fraction of
the total mass (usually taken to be 99%). With this definition, it is possible to compute the
e↵ective compactness of a boson star and one finds

(M/R)max = 0.08 (for free-field boson stars). (8)

Eq. (7) places the maximum compactness of self-interacting boson stars in the same
ballpark of NS.
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Figure 2: The LIGO best sensitivity range in ECO mass M and compactness C, for
equal mass binary GW events. The yellow band corresponds to the GW frequency range
f = [50�1000] Hz, the green regions to a signal-to-noise ratio for an inspiral event occurring
within the luminosity distance DL, taking ⇢ > 8 as a criterion for detection.

with respect to the detector. The amplitude of a GW is proportional to the inverse of the
luminosity distance DL = (1 + z)Dc, where the comoving distance is

Dc =
c

H0

Z z

0

dt

E(t)
, E(z) =

p
⌦M(1 + z)3 + ⌦k(1 + z)2 + ⌦⇤ , (20)

with tH ⌘ 1/H0 = 13.969 Gyr the Hubble time. For a given luminosity distance, and
assuming standard cosmology (that corresponds to ⌦k = 0, ⌦⇤ = 0.7, and ⌦M = 0.3), it is
possible to extract the redshift z, and convert the detector-frame chirp mass into the source
frame chirp mass.

We can use the signal-to-noise ratio criterion ⇢ > 8 to estimate the sensitivity range of the
LIGO detector in terms of mass and compactness. For illustration, we take the limit of equal
masses M1 = M2 = M . Since we are limiting the analysis to the inspiral phase, eq. (18) is
valid in the frequency range f < fISCO and we cuto↵ the integral in eq. (17) at f = fISCO. We
show our result in fig. 2. The yellow band shows the LIGO frequency sensitivity range, given
in eq. (16). The green regions show the signal intensity sensitivity range (corresponding to
⇢ > 8), for a single GW event occurring within a distance DL. We choose three particular
values of the maximum luminosity distance, namely DL = 100, 250, 450 Mpc. Note that
the corresponding redshift is very small, ranging from z = 0.023 for DL = 100 Mpc to
z = 0.1 for DL = 450 Mpc. We therefore neglect the redshift e↵ects in fig. 2. The overlap
between the yellow and green regions identifies the LIGO best sensitivity in ECO mass M
and compactness C.

Let us now analyse in detail the implications of eq. (16) for the various models considered
in sect. 2.

13

The orbital period P is related to Mtot and l by Kepler’s third law

P 2 =
4⇡2l3

Mtot

. (11)

The frequency f of GW emission is twice the orbital frequency ⌫ = 1/P , and thus is
given by

f =

r
Mtot

⇡2l3
. (12)

For the system of two BHs the innermost stable circular orbit (ISCO) [108] is defined by

RISCO
BH ⌘ 6Mtot . (13)

The ISCO determines the end of the inspiral phase and the beginning of the merger phase,
thus this radius characterises the typical frequency f ISCO

BH expected in a binary merger. For
a BH-BH merger, we find

f ISCO
BH =

1

63/2⇡Mtot

(for BH) . (14)

The maximum frequency at the end of inspiral, obtained from numerical simulations of the
waveform of BH mergers, is given by f = f ISCO

BH (1 + �), where the correction term � is
computed in post-Newtonian approximation and is a function of the mass ratio M1/M2 and
of a single combination of the two BH spins. Its analytical expression can be found in [108].
The correction term � vanishes in the limit of negligible BH spin and large mass ratio. For
non-rotating BHs, it reaches a maximum value � = 1.1 for M1/M2 = 3.56, while � = 0.7 for
equal BH masses. For spinning BHs, in the parameter range for which the expansion given
in [108] is valid, the maximum value reached is � = 3.1. Thus, for discussion purposes, it is
adequate to take the expression in eq. (14) as the frequency determining the end of inspiral.
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By analogy with eq. (13), for ECOs we may define a typical GW frequency determined
by the ISCO radius RISCO
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33/2⇡Mtot

(for ECO) . (15)
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f ISCO falls within the LIGO sensitivity range. LIGO sensitivity can be described in terms
of the so-called noise power spectral density [110]. We plot this function in fig. 1. The
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Figure 5: Left panel. Mass-compactness relation in the case of boson stars without self-
interactions. Right panel. LIGO best sensitivity (defined as in fig. 2) in terms of the boson
star mass M and dark matter mass mB.

eV if there is enough probability of observing GW events within 100 Mpc. This range is
quite di↵erent from the one of the interacting case because, for the free particle, the pull of
gravity, which becomes stronger with mB, is balanced only by the quantum e↵ects generated
by the Heisenberg uncertainty principle.

The LIGO sensitivity mass range for the non-interacting boson is interesting for axion-like
particle interpretations. For the QCD axion, one finds

ma =

✓
1017 GeV

fa

◆
0.6⇥ 10�10 eV (24)

where fa is the axion decay constant. Hence, LIGO can be sensitive to axion models in
which the symmetry-breaking scale is in the range 1 ⇥ 1016 GeV . fa . 3 ⇥ 1017 GeV.
This is an intriguing range of scales, since these are the values expected in GUT or String
models. A QCD axion with decay constant in the GUT range can be a good dark matter
candidate only if its field configuration at the end of inflation is su�ciently close to the
minimum of its potential (which, in the absence of a dynamical explanation, corresponds to
tuned initial conditions) [125, 126]. Moreover, it can be consistent with WMAP constraints
on isocurvature fluctuations only if the Hubble constant during inflation is smaller than
109–1010 GeV. Therefore, detection of a non-vanishing tensor-to-scalar ratio in the cosmic
microwave background could rule out a QCD axion with GUT-scale decay constant as dark
matter candidate [127].

Finally, the new boson could be an axion-like particle, unrelated to the strong CP prob-
lem. In this case, its mass is expected to be mB ⇡ ⇤2/fB, where fB is the scale of sponta-
neous symmetry breaking and ⇤ is the dynamical scale associated with the explicit breaking

18
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Figure 10: Quasi-normal mode frequency and decay time for BH ringdown (blue dots) and
g

⇤ ringdown (purple line). Their clear separation shows that the g

⇤ could be distinguished
from the BH, if the ringdown phase is well measured. The purple star refers to the special
value of quasi-normal mode frequencies used in fig. 11.

object collisions, and has been studied in detail for boson stars [135, 136, 137], however as
boson star signatures are likely to arise already in the modified inspiral and merger waveform,
in this section we will instead focus on gravastars (g⇤) as an example of ECOs that lead to
distinctive predictions in the ringdown phase, di↵erent from those of BH.

Before entering in the details of our discussion, let us mention the following important
caveats. Apart from theoretical arguments, the reader should keep in mind that the mea-
surement of a rapid event like the ringdown phase is a challenging experimental task. In
addition, as stressed in [9, 138], only precision observations of the late-time ringdown signal
can be used to unambiguously test the properties (or the absence) of an event horizon, espe-
cially for ECOs with compactness close to that of BHs. The reason for this is that just after
the merger the signal is dominated by oscillations of the light ring, which is the same for a
BH and an ultra-compact object such as a g⇤. The light ring contribution does diminish,
leaving the true quasi-normal modes in the later stages of the ringdown. The importance of
this e↵ect depends on the compactness. For objects with compactness very close to a BH,
the light ring oscillations could give a ringdown mimicking a BH for many oscillations.

As discussed in sect. 2.6, the simplest model of gravastars is described by three input
parameters which, for convenience, we choose to be P ⌘ {M,C, �}: the total gravitational
mass M , the compactness C ⌘ M/R, and the radius fraction in the outer shell � ⌘ (R �
rc)/R.

Varying the parameters P , we study the stability of the g⇤ by solving the Oppenheimer-
Volko↵ equation describing – in the context of general relativity – the structure of a spher-
ically symmetric body in static gravitational equilibrium. We follow [104], where the con-
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Using GW experiments 
to constrain DM 
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Topological Defects
• Again consider scalar field with e.g. 

• If               at     infinity, then stable domain wall will 
form that connects the two 

• Typical “size”            and energy per area 

• A network of such topological defects could 
contribute to DM density

39

Extended field configurations of light 
fields !

Take a simple scalar field, give it a self-potential e.g.  V(φ) = λ(φ2-v2)2. !

If at x = - infinity, φ = -v and at x = +infinity, φ = +v, then a stable 
domain wall will form in between, e.g. φ = v tanh(x mφ) with !

mφ = λ1/2 v!

The characteristic “span” of this object, d ~ 1/mφ, and it is carrying 
energy per area ~ v2/d ~ v2 mφ   Network of such topological defects 
(TD) can give contributions to dark matter/dark energy.!

!

0D object – a Monopole (also a Q-ball, others)!

1D object – a String!

2D object – a Domain wall!

 !

Energy 
profile 

d ~ 1/mφ 

� = ±v ±

1/m� v2m�

Macroscopic DM

M. Pospelov @ GW & Cosmology, DESY, 2016



Signals
• Defect could pass through detector 

• Transient (finite duration) signal 

• GW detectors are very sensitive to tiny variations 
• Can hope to detect signal there

40

M. Pospelov @ GW & Cosmology, DESY, 2016



Gravitational Interaction only
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Simulation of sensitivity to grav interaction 

 

A passage of 0-dim objects (e.g. “monopoles”) gives a disturbance 
signal with characteristic ω ~ v/L ~ 100 Hz (a good range for Ligo!). 
Average energy density is fixed to galactic ρDM.   

A few orders of magnitude short from being able to detect 
gravitational-size interaction with macroscopic DM.  
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FIG. 1. (color online). Cumulative event rate for minimal (pure grav-
itational) interactions in a single Advanced LIGO detector and in a
single LISA detector. SNR > 1 correspond to very infrequent events,
with rates below 10�3yr�1 for aLIGO and 10�1yr�1 for LISA.

kth test mass (four in the case of LIGO, conventionally la-
beled as IX, IY, EX, and EY). The acceleration is determined
by the gradient of Eq. (2) with i = SM and j = DM. The
detector’s GW channel reads out the di�erential acceleration
a(t) =

�
a(EX)

x (t)�a(IX)
x (t)

⇥��a(EY)
y (t)�a(IY)

y (t)
⇥

[31]. We assume
that the signal of this event can be optimally recovered from
the detector’s time stream using matched filtering; i.e., the
signal-to-noise ratio (SNR) is ⇧ =

⌅
4
⇤ ⌃

0 df |a( f )|2/S nn( f )
⇧1/2

,
where a( f ) is the Fourier transform of a(t) and S nn( f ) is the
power spectral density (PSD) of the detector’s acceleration
noise n(t) [32].

In addition to simulating several DM masses for each detec-
tor, we also vary the coupling g = �SM�DM and the screening
⇤, as defined in Eq. (2). The Newtonian case (g = 0) has al-
ready been analyzed analytically in the context of primordial
black hole detection with LISA [6], in the limits b ⇤ ⌃ (the
“close-approach” limit) and b ⌅ ⌃ (the “tidal” limit), in both
cases assuming a flat detector noise PSD and normal incidence
of the masses to the detector plane.

We then compute the cumulative rate function ⇥̇(⇧), which
gives the number of events per year with SNR above ⇧. In
Fig. 1 we plot the detector interaction rates assuming a New-
tonian coupling. One can observe that the parameters leading
to SNR > 1 correspond to very infrequent events, with rates
below 10�3yr�1 for aLIGO and 10�1yr�1 for LISA. Therefore,
detecting a gravitational strentgh interaction will be extremely
challenging.

Nevertheless, Fig. 1 shows that the current and future in-
struments are just a few orders of magnitude short of being

sensitive to the most minimal model of DM-SM interaction,
for an optimal DM mass. This is in contrast to the searches of
dark matter in form of elementary particles, where the most
sensitive experiments [3] will reach the level of sensitivity
to the nucleon-DM elastic cross section ⌅p�DM ⇥ 10�48cm2

for mDM ⇥ 100 GeV/c2. This sensitivity is to be compared
to the gravitational cross section that scales as ⇧ G2

Nm2
p/v4

DM
and does not exceed 10�90cm2, which is over 40 orders of
magnitude below the experimental capabilities. On the other
hand, the gravitational wave interferometry is insensitive to
the microscopic mass elementary particle DM, and thus these
two methods (gravitational wave detectors and nuclear recoil
in underground experiments) are completely complementary,
probing di�erent types of DM.

In Figs. 2 and 3 we show how ⇥̇ is enhanced if the SM–
DM interaction follows a Yukawa force law. The ability of
LIGO and LISA to place constraints on g and ⇤ depends on
the mass of DM object; in both cases, the smallest masses
considered (0.1 kg for LIGO, 109 kg for LISA) allow for the
most sensitivity to {g, ⇤} parameter space. If we choose �SM
close to the existing bounds, and �DM to saturate (5), then the
rate of loud encounters can exceed O(10) per year. For LISA,
the event rate can become very large, and indeed exceed 104

events per year, when the product of �SM�DM is taken to its
maximum.

To confidently claim detection, a DM signal must be distin-
guished from glitches and other detector artifacts. One strat-
egy is to look for DM signals using two or three co-located
detectors. The current rate of glitches that are uncorrelated
between the LIGO detectors is su⇥ciently low to allow detec-
tion of the broadband signals with SNR above 8 in coinci-
dence between Hanford and Livingston detectors. The envi-
ronmental disturbances such as acoustic, seismic, or electro-
magnetic can potentially produce glitches that are coincident
between co-located detectors. This background can be e�ec-
tively vetoed by the environment monitoring sensors and in
case of the three co-located interferometers by the null stream
combination of the interferometer outputs that does not con-
tain the signal. The Advanced LIGO detectors as currently
built are not co-located, though the Hanford facility did house
two co-located Initial LIGO detectors. Some of the plans for
LISA-like space missions [33] and for ground based observa-
tories [28, 29] involve three co-located detectors. We assume
that the glitch rate of the future detectors will not exceed that
of the current generation detectors.

Also, as Fig. 3 show, for g > 104 the rate may exceed hun-
dreds of events per year. Such large rates would eventually
allow a statistical discrimination of the DM encounters from
noise sources. One handle that can be used is the ⇥ 10% an-
nual modulation of the DM event rate, with a very well known
phase (maximum at the end of June), when the Earth’s veloc-
ity vector is constructively added to the velocity of the So-
lar system resulting in a larger e�ective flux of DM. When
the number of events is large, one can build another statistical
discriminator using correlation between the duration and am-
plitude of the events (close encounters with DM lead to higher

1606.01103 

Almost good enough 
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New Yukawa Interaction
• LIGO 

• LISA

42Sensitivity to new Yukawa interaction 
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•  g=δSMδDM!

!

aLIGO!

!

!

!

!

!

!

Maximal g of 107 can result in O(100) signal events at aLIGO. !
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FIG. 2. (color online). Event rate ⇥̇(1) for non-SM interactions in a single Advanced LIGO detector, as a function of coupling g = �SM�DM and
screening length ⇤. For a long range force the rate can reach O(100) events per year when g is taken to a maximum value.

FIG. 3. (color online). Event rate ⇥̇(1) for non-SM interactions in a single LISA detector, as a function of coupling g = �SM�DM and screening
length ⇤. The event rate reaches O(100) per year at g � 104 and will increase to over 104 at large ⇤ and g � 107.

Sensitivity to new Yukawa interaction 
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•  g=δSMδDM!

!

LISA !

!
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!

!

!

LISA event rate could be huge! !
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FIG. 2. (color online). Event rate ⇥̇(1) for non-SM interactions in a single Advanced LIGO detector, as a function of coupling g = �SM�DM and
screening length ⇤. For a long range force the rate can reach O(100) events per year when g is taken to a maximum value.
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Magnetic force
• Domain walls with axion like couplings will apply 

force to nuclear spins as wall passes through 

• Detectable with network of magnetometers 

• People actually do this! Here!
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Summary
• Gravitational Waves offer unique window into the 

early universe 

• Possible to observe GWs from phase transitions, 
possibly from dark (matter) sectors  

• More exotic DM objects might directly (through 
mergers) or indirectly (through their interactions) 
show up in GW detectors 

• Also Inflation, Supernovas, tests of GR, etc… worth 
spending some time thinking about GWs 
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Summary
• We are used to looking for 

new physics under the  
lamppost 

• Sometimes it is useful to  
remember that there is more  
than one lamp
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Dark Matter
48

We#have#seen#DM#in#the#sky:#
But#no#direct#observa7on##
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [44] (dark yellow line), CDMS II [45] (green
line), ZEPLIN-III [46] (magenta line), CDMSlite [47] (dark
green line), XENON10 S2-only [20] (brown line), SIMPLE [48]
(light blue line) and XENON100 100 live-day [49] (orange
line), and 225 live-day [50] (red line) results. The inset
(same axis units) also shows the regions measured from annual
modulation in CoGeNT [51] (light red, shaded), along with
exclusion limits from low threshold re-analysis of CDMS II
data [52] (upper green line), 95% allowed region from
CDMS II silicon detectors [53] (green shaded) and centroid
(green x), 90% allowed region from CRESST II [54] (yellow
shaded) and DAMA/LIBRA allowed region [55] interpreted
by [56] (grey shaded). Results sourced from DMTools [57].

upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.

The 90% upper C. L. cross sections for spin-
independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [45,
46, 50, 51]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [45, 51, 54, 55].
These results do not support such hypotheses based
on spin-independent isospin-invariant WIMP-nucleon
couplings and conventional astrophysical assumptions

for the WIMP halo, even when using a conservative
interpretation of the existing low-energy nuclear recoil
calibration data for xenon detectors.

LUX will continue operations at SURF during 2014
and 2015. Further engineering and calibration studies
will establish the optimal parameters for detector
operations, with potential improvements in applied
electric fields, increased calibration statistics, decaying
backgrounds and an instrumented water tank veto
further enhancing the sensitivity of the experiment.
Subsequently, we will complete the ultimate goal of
conducting a blinded 300 live-day WIMP search further
improving sensitivity to explore significant new regions
of WIMP parameter space.
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Maybe#DM#is#just#part#of#a#larger#dark#sector##

•  Example:#Proton#is#massive,#stable,#composite#state#
•  DM#self#interac7ons#solve#structure#forma7on#problems#
•  New#signals,#new#search#strategies!#



Composite DM
49
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p , n
decay

• SU(N) dark sector 
with neutral  
“dark quarks”  

• Confinement scale 

• DM is composite 
“dark proton”

⇤darkQCD

Bai, PS, PRD 89, 2014
PS, Stolarski, Weiler, JHEP 2015

many other works!
Similar setup e.g.: Blennow et al; Cohen et al; Frandsen et al;
Reviews: Petraki & Volkas, 2013; Zurek, 2013;



DM Motivation
• New mechanisms for relic density, extend mass range: 

‣ Asymmetric DM - GeV-TeV scale 

‣ Strong Annihilation - 100 TeV scale 

‣ SIMP - MeV scale 

• Advantages of Composite 

‣ DM mass scale and stability 

‣ Fast annihilation for ADM  

‣ Self-interactions for structure formation

50

Hochberg, Kuflik, Volansky, Wacker, 2014; + Murayama, 2015 



GW spectra
• Lot of work on GW from 1st order PT 

• Still difficult to simulate or model 

• Here in addition: 
• Transition is non-perturbative 

• Parameters not known - take an optimistic guess
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�/H⇤ = 1� 100

v = 1
↵

1 + ↵
= 0.1

See talks by

Hindmarsh, Weir

for more details 



SU(N) - PT 2
• One more parameter:      angle 

• Effect on PT not well studied 

•              dependence of PT strength?  

• Finite density/chemical potentials?  
‣ QCD FOPT?  

‣ GW signal: 
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signal will dominate: however, this seems somewhat un-
natural given the extremely high Reynolds number of the
primordial fluid, and we discard this possibility in this
work) [58].
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FIG. 2: The GW signal from bubble collisions and MHD tur-
bulence for ΩS∗ = 0.1 and v = 0.7. We choose β = 10H∗.
The signal is dominated by the contribution from MHD tur-
bulence. The bubble collision peak causes the hump on the
left of the true peak of the spectrum.

In Fig. 2 we show the total signal for the more opti-
mistic case, ΩS∗ = 0.1 and v = 0.7. The peak frequency
of the total GW spectrum corresponds to the MHD tur-
bulence peak: k/β ≃ π2/v, and depends on the choice
β = 10H∗. From f = k/(2π) one obtains [42, 44]

fp ≃ 1.7 · 10−9 π2

v

β

H∗

( g∗
10

)
1

6 T∗

100MeV
Hz (5)

where g∗ is the number of effective relativistic degrees of
freedom at the temperature T∗. With v = 0.7, β = 10H∗,
g∗ = 10 and T∗ = 100MeV the peak frequency becomes
fp ≃ 2.5 · 10−7 Hz.

III. THE PULSAR TIMING ARRAY

Neutron stars can emit powerful beams of electromag-
netic waves from their magnetic poles. As the stars ro-
tate the beams sweep through space like the beacon of a
lighthouse. If the Earth lies within the sweep of a neu-
tron star’s beams, the star is observed as a point source
in space emitting short, rapid pulses of electromagnetic
waves, and is referred to as a pulsar.
The electromagnetic pulses we observe arrive at a very

steady rate due to the enormous moment of inertia of
neutron stars. The idea to use these stable clocks to
detect GWs was first put forward in the late 1970s [47–
49]. Fluctuations in the time of arrival of pulses, after all
known effects are subtracted, could be due to the pres-
ence of GWs. Recently pulsar timing precision has im-
proved dramatically. Jenet and collaborators [50] have
shown that the presence of nano-Hertz GWs could be
detected using a pulsar timing array (PTA) consisting

of 20 pulsars with timing precisions of 100 nanoseconds
over a period of 5 to 10 years (see also [4, 5] for more re-
cent PTA sensitivity estimates). Pulsar timing arrays are
most sensitive in the band 10−9 Hz < f < 10−7 Hz. The
lower limit in frequency is given by the duration of the ex-
periment (∼ 10 yr.) and the upper limit by the sampling
theorem, i.e. the time between observations (∼ 1 month).
The spike in the sensitivity at f = 0.3× 10−7Hz seen in
Fig. 3 is the frequency of the earth’s rotation around the
sun which cannot be disentangled from a GW with the
same frequency.
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FIG. 3: Comparison of the GW spectrum h2Ω(f) with cur-
rent NANOGrav pulsar timing array sensitivity and expected
sensitivity of pulsar timing experiments in 2020 [5]. We have
used h = 0.73, Ωr0 = 8.5 × 10−5, ΩS∗ = 0.1 and v = 0.7. We
plot the GW spectra for the values H∗/β = 1, 0.5, 0.2, 0.1
(dashed lines from top to bottom). For H∗/β ∼ 1, the back-
ground of GWs can just be detected in present pulsar timing
experiments, while for 0.1 ! H∗/β it can be detected by the
planned array IPTA2020 (very high values of H∗/β ∼ 1 are
difficult to accommodate in the case of a thermally nucle-
ated phase transition, c.f. discussion in the text). We also
show the LISA sensitivity [52, 53]. Unfortunately, LISA will
not be able to detect a signal from a first order QCD phase
transition (the EW phase transition is more promising in this
respect [25–41, 44, 46]).

The North American Nanohertz Observatory for Grav-
itational Waves (NANOGrav) [51], a collaboration of as-
tronomers, has created a pulsar timing array–a galactic
scale GW observatory using about 20 pulsars. It is a
section of the IPTA, an international collaboration in-
volving similar organizations of European and Australian
astronomers. The current NANOGrav pulsar timing ar-
ray sensitivity is shown in Fig. 3, together with the GW
spectra we expect from the QCD phase transition as a
function of frequency

h2ΩGW(f) = h2 dΩGW

d log k
, (6)

for H∗/β = 1 (top dashed line), H∗/β = 0.5 (upper-



Questions for Lattice
• Dynamics of PT known from lattice? 

• Latent heat 

• Bubble nucleation rate 

• Dependence on 

• theta param, chem. potentials?  

• At least some of this is known AFAIK  

• For Cosmology:               relevant
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I’d be happy to 
collaborate!


