What Gravitational Waves might tell us about Dark Matter

Pedro Schwaller (JGU Mainz)

Aachen - Bonn - Heidelberg - Mainz RU Meeting MITP Mainz Dec. 16, 2016

Physics Highlight 2016

National Science Foundation **LIGO** announces first direct observation of Gravitational Waves

LIGO

Hanford, Washington, USA

<u>Signal</u>

Great!

But why should We (particle physicists) Care?

Outline

- The GW Soundscape
- GWs as windows into the early universe
 - Signal from a dark (matter) sector PT
- GWs from massive compact (DM) objects
- Constraining DM interactions with GW expts

Ligo is not the only game in town

Experiments

GWs as window into the early universe

Thermal History

Thermal History

GWs are unique direct messengers from this era!

But also difficult to detect

need a strong signal!

Cosmological Phase Transitions

• Early Universe in symmetric phase (e.g. unbroken electroweak symmetry)

GWs from PTs

First order PT → Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

Signal is Universal

- PT characterised by few parameters:
 - Latent heat $\alpha \approx \frac{\Omega_{\rm vacuum}}{\Omega_{\rm rad}}$
 - Bubble wall velocity v
 - Bubble nucleation rate β
 - PT temperature T_{st}
- Three physical contributions
 - Bubble wall collisions
 - Turbulence
 - Sound waves

Extensive numerical simulations. Recently e.g. Hindmarsh et al: Sound wave contributions

Phenomenological Parameterisations: Caprini et al, 1512.06239

GW signal

$$0.0 \begin{bmatrix} 0.0001 \\ 0.01 \\ 0 \end{bmatrix} = 0.001 \\ 0 \end{bmatrix} = 0.001 \\ 0.01 \\ 0 \end{bmatrix} = 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.1 \end{bmatrix}$$

• Redshift:

$$f = \frac{a_*}{a_0} H_* \frac{f_*}{H_*} = 1.59 \times 10^{-7} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \times \left(\frac{T_*}{1 \text{ GeV}}\right) \times \frac{f_*}{H_*}$$
Peak regions: $k/\beta \approx (1-10)$

$$f_{\text{peak}}^{(B)} = 3.33 \times 10^{-8} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \text{ GeV}}\right) \left(\frac{\beta}{\mathcal{H}_*}\right)$$

Example: Strong EWPT

PS, 2016

SM: PTs are weak

PT in a dark sector?

Composite DM

- Alternative to elementary WIMP models
- Phenomenologically viable, "generic" possibility in presence of hidden sectors
- Some nice features:
 - DM stability, mass scale
 - Symmetric component annihilation for ADM
 - Self-interactions

Dark QCD

- Models I'm interested in here:
- Nonabelian SU(N) dark sector, confinement scale Λ_d
- n_f light/massless flavours

 $n_f = 0$

Glueball DM

PT from center symmetry restoration

 $n_f > 0$

Dark Baryons or Dark Pions

Chiral Symmetry Breaking

The Dark Phase Transition

Phase Transition

- SU(N) dark sectors well motivated
- Confinement/chiral symmetry breaking phase transition at scale Λ_d
 - DM: $\Lambda_d \sim M_{\rm DM}$ (MeV 100 TeV)
 - Naturalness: $\Lambda_d \sim \text{few} \times \Lambda_{\text{QCD}}$
- First order PT in large class of models
- Still possible if LHC finds no new physics

QCD Phase Diagram

 $m_{u,d}$

Phase Diagram II

SU(N) - PT

- Consider $SU(N_d)$ with n_f massless flavours
- PT is first order for
 - $N_d \geq 3$, $n_f = 0$
 - + $N_d \geq 3$, $3 \leq n_f < 4N_d$

Svetitsky, Yaffe, 1982 M. Panero, 2009

Pisarski, Wilczek, 1983

- Not for:
 - $n_f = 1$ (no global symmetry, no PT)
 - $n_f = 2$ (not yet known)

Models span full mass range: few 100 MeV (SIMP) to ~100 TeV (strong annihilation, saturating unitarity bound)

Experiments

GWs from Exotic Compact Objects (ECO)

Exotic Compact Objects

- Two SM objects can produce binary inspiral signal:
 - Black Holes
 - Neutron Stars
- Dark sector particles may form ECOs:
 - boson stars (e.g. axions)
 - fermion stars
 - DM stars

Characteristics

- LIGO: Wave-form gives information about masses and radii
- Mass:
 - Neutron stars $M < 3.6 M_{\odot}$
 - Any heavier objects must be a BH (in SM)
- Compactness: C = M/R
 - Black hole has C = 1/2, NS are below 1/4 typically

• Free field boson stars

$$M_{\rm max} = 0.633 \; \frac{M_P^2}{m_B} \approx \left(\frac{10^{-10} \; \text{eV}}{m_B}\right) M_{\odot} \qquad (M/R)_{\rm max} = 0.16$$

• Self-interacting boson stars

$$M_{\rm max} = 0.06\sqrt{\lambda} \ \frac{M_P^3}{m_B^2} \approx \sqrt{\lambda} \left(\frac{100 \ {\rm MeV}}{m_B}\right)^2 10 \ M_{\odot} \qquad (M/R)_{\rm max} = 0.08$$

based on Giudice, Mccullough, Urbano, 2016

• Free field boson stars

$$M_{\rm max} = 0.633 \; \frac{M_P^2}{m_B} \approx \left(\frac{10^{-10} \; {\rm eV}}{m_B}\right) M_{\odot} \qquad (M/R)_{\rm max} =$$

Axion mass range

• Self-interacting boson stars

$$M_{\rm max} = 0.06\sqrt{\lambda} \ \frac{M_P^3}{m_B^2} \approx \sqrt{\lambda} \left(\frac{100 \ {\rm MeV}}{m_B}\right)^2 10 \ M_{\odot} \qquad (M/R)_{\rm max} = 0.08$$

Dark pions?

based on Giudice, Mccullough, Urbano, 2016

0.16

Detectability

Detectability

Waveforms

High-end Z, IMR PhenomC

Ringdown frequency

Using GW experiments to constrain DM

based on M. Pospelov's talk at DESY workshop on Gravitational Waves and Cosmology, 2016

Topological Defects

- Again consider scalar field with e.g. $V(\phi) = \lambda(\phi^2 v^2)^2$
- If $\phi = \pm v$ at \pm infinity, then stable domain wall will form that connects the two
- Typical "size" $1/m_{\phi}$ and energy per area $v^2 m_{\phi}$
- A network of such topological defects could contribute to DM density

Macroscopic DM

Signals

- Defect could pass through detector
 - Transient (finite duration) signal
- GW detectors are very sensitive to tiny variations
 - Can hope to detect signal there

Gravitational Interaction only

Almost good enough

M. Pospelov @ GW & Cosmology, DESY, 2016

New Yukawa Interaction

LISA

Magnetic force

- Domain walls with axion like couplings will apply force to nuclear spins as wall passes through
- Detectable with network of magnetometers
- People actually do this! Here!

The GNOME Experiment

Notebook

Collaboration website

Live Data

News Download

Internal

Current date: 2016/12/15 23:35:11 GPS

Show Map Legend

Mainz

Institution: JG-University of Mainz Sensor type: Atomic Magnetometer Sensor: Rubidium atomic magnetometer with NMOR probe Contacts: Dmitry Budker, Samer Afach, Arne Wickenbrock, Hector Masia Roig

Coordinates: 49.9929 N, 8.2473 E

Summary

- Gravitational Waves offer unique window into the early universe
- Possible to observe GWs from phase transitions, possibly from dark (matter) sectors
- More exotic DM objects might directly (through mergers) or indirectly (through their interactions) show up in GW detectors
- Also Inflation, Supernovas, tests of GR, etc... worth spending some time thinking about GWs

Summary

- We are used to looking for new physics under the lamppost
- Sometimes it is useful to remember that there is more than one lamp

Dark Matter

We have seen DM in the sky:

Maybe DM is just part of a larger dark sector

- Example: Proton is massive, stable, composite state
- DM self interactions solve structure formation problems
- New signals, new search strategies!

Composite DM

- SU(N) dark sector with neutral "dark quarks"
- Confinement scale
 - $\Lambda_{\rm darkQCD}$
- DM is composite
 "dark proton"

Bai, PS, PRD 89, 2014 PS, Stolarski, Weiler, JHEP 2015

Similar setup e.g.: Blennow et al; Cohen et al; Frandsen et al; Reviews: Petraki & Volkas, 2013; Zurek, 2013;

DM Motivation

- New mechanisms for relic density, extend mass range:
 - Asymmetric DM GeV-TeV scale
 - Strong Annihilation 100 TeV scale
 - SIMP MeV scale Hochberg, Kuflik, Volansky, Wacker, 2014; + Murayama, 2015
- Advantages of Composite
 - DM mass scale and stability
 - Fast annihilation for ADM
 - Self-interactions for structure formation

GW spectra

- Lot of work on GW from 1st order PT
 - Still difficult to simulate or model
- Here in addition:
 - Transition is non-perturbative
 - Parameters not known take an optimistic guess

$$\beta/H_* = 1 - 10$$
$$v = 1$$
$$\frac{\kappa\alpha}{1 + \alpha} = 0.1$$

()

SU(N) - PT 2

- One more parameter: ⊖ angle
- Effect on PT not well studied

M. Anber, 2013 Garcia-Garcia, Lasenby, March-Russell, 2015

• N_d , n_f dependence of PT strength?

Panero, 2009

- The second sec
 - ▶ QCD FOPT? Schwarz, Stuke, 2009
 ▶ GW signal:

Caprini, Durrer, Siemens, 2009

Questions for Lattice

- Dynamics of PT known from lattice?
 - Latent heat
 - Bubble nucleation rate
 - Dependence on N_d , n_f
 - theta param, chem. potentials?
- At least some of this is known AFAIK
- For Cosmology: $T < T_C$ relevant

I'd be happy to collaborate!