

Latest results from Mastercode

Kazuki Sakurai

IPPP, Durham University

Experimentalists

O.Buchmueller, R.Cavanaugh, M.Citron, A.De Roeck, H.Flacher, S.Mallik, J.Marrouche, D.Martinez-Santos, K.J.de Vries,

Theorists

E.Bagnaschi, M.Dolan, J.Ellis, S.Heinemeyer, G.Isidori, K.Olive, K.Sakurai, G.Weiglein

15/12/2015 @ University of Heidelberg

Global fit I SM

• confront theory predictions with the experimental values

$$\chi^2 = \sum_{i} \left(\frac{\mathcal{O}_i^{theo.} - \mathcal{O}_i^{meas.}}{\sigma_i} \right)^2$$

- the status of the model
- min χ² after marginalising other parameters
- the most likely values for unconstrained parameters and unmeasured observables

search strategiesimplication to the model

Particularly important after NP discovery

•

MasterCode

algorithm. **Mas**/Tercore Mass spectra, Decays **EW** precision observables SoftSUSY, SDecay FeynWZ Sampling **Dark Matter** Multinest **B-Physics** MicrOmega, SSARD SuFla, SuperIso

LHC SUSY searches

Atom, Scorpion

Mass spectra: SoftSUSY Decays: SDecay

Higgs sector and $(g-2)_{\mu}$

FeynHiggs, Higgssignals, Higgsbounds

- The spectrum is used for calculation of other observables.
- The decay info is used for the direct SUSY search constraints.

1.0

1.5

EW precision obs: FeynWZ

Observable	Constraint
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	0.02756 ± 0.00010
M_Z [GeV]	91.1875 ± 0.0021
$\Gamma_Z \ [\text{GeV}]$	$2.4952 \pm 0.0023 \pm 0.001_{\rm SUSY}$
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037
R^0_ℓ	20.767 ± 0.025
$A_{ m FB}^{0,\ell}$	0.01714 ± 0.00095
$\mathcal{A}_{\ell}(P_{\tau})$	0.1465 ± 0.0032
$\mathcal{A}_{\ell}(\mathrm{SLD})$	0.1513 ± 0.0021
$R_{\rm b}^0$	0.21629 ± 0.00066
$R_{ m c}^{ m 0}$	0.1721 ± 0.0030
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035
\mathcal{A}_b	0.923 ± 0.020
\mathcal{A}_{c}	0.670 ± 0.027
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB}^{\rm had})$	0.2324 ± 0.0012

DM relic : MicrOmega $\sigma^{SI}_{\chi-N}$: SSARD

Require

thermal neutralino = observed DM

B-Physics: SuFla, SuperIso

Observable	Constraint	
$BR(B_{s,d} \to \mu^+ \mu^-)$	CMS & LHCb (unofficial) combination	
$\mathrm{BR}^{\mathrm{EXP/SM}}_{B o X_s \gamma}$	$1.089 \pm 0.070_{\rm EXP} \pm 0.080_{\rm SM} \pm 0.050_{\rm SUSY}$	
$\mathrm{BR}^{\mathrm{EXP/SM}}_{B \to \tau \nu}$	$1.39 \pm 0.28_{\rm EXP} \pm 0.13_{\rm SM}$	
$\mathrm{BR}^{\mathrm{EXP/SM}}_{B \to X_s \ell \ell}$	0.99 ± 0.32	
$\mathrm{BR}_{K o \mu \nu}^{\mathrm{EXP/SM}}$	$1.008\pm0.014_{\rm EXP+TH}$	
$\mathrm{BR}_{K \to \pi \nu \bar{\nu}}^{\mathrm{EXP/SM}}$	< 4.5	
$\Delta M_{B_s}^{\rm EXP/SM}$	$0.97\pm0.20_{\rm SM}$	
$\frac{\Delta M_{B_s}^{\rm EXP/SM}}{\Delta M_{B_d}^{\rm EXP/SM}}$	$0.86\pm0.14_{\rm SM}$	
$\Delta \epsilon_K^{\mathrm{EXP/SM}}$	$1.14\pm0.10_{\rm EXP+TH}$	

 $M_h = 125.09 \pm 0.24_{\rm EXP} \pm 1.5_{\rm SUSY} \,\,{\rm GeV}$

 $m_t = 173.2 \pm 0.87 \text{ GeV}$

~3.6 σ deviation in (g-2)_µ pushing the SUSY scale low

MasterCode

LHC SUSY searches:

Atom, Scorpion

important constraints but challenging to estimate

Sampling: Multinest

reduce the effective dim. of parameter space

CMSSM: $m_0, m_{1/2}, A_0, \tan \beta$ [1312.5250] NUHM1: $m_0, m_{1/2}, A_0, \tan \beta, m_{H_u}^2 = m_{H_d}^2$ [1312.5250] NUHM2: $m_0, m_{1/2}, A_0, \tan \beta, m_{H_u}^2, m_{H_d}^2$ [1408.4060]

LHC constraint depends (almost) only on m_0 , $m_{1/2}$.

shaped by **DM**, **Jet + MET**, *m*_h

stau coan. hybrid 💽 A/H funnel	$\left(\frac{m_{\tilde{\tau}_1}}{m_{\tilde{\chi}_1^0}} - 1\right) < 0.15$ $\left \frac{M_A}{m_{\tilde{\chi}_1^0}} - 2\right < 0.4$
focus point	$\left(\frac{\mu}{m_{\tilde{\chi}_1^0}}\right) - 1 < 0.3$
chargino coan.	$\left(\frac{m_{\tilde{\chi}_1^\pm}}{m_{\tilde{\chi}_1^0}}-1\right)<0.1$

stau coan. $\begin{pmatrix} m_{\tilde{\tau}_{1}} \\ m_{\tilde{\chi}_{1}^{0}} \\ -1 \end{pmatrix} < 0.15$ hybrid
A/H funnel $\begin{vmatrix} M_{A} \\ m_{\tilde{\chi}_{1}^{0}} \\ -2 \end{vmatrix} < 0.4$ focus point $\begin{pmatrix} \mu \\ m_{\tilde{\chi}_{1}^{0}} \\ m_{\tilde{\chi}_{1}^{0}} \\ -1 < 0.3$ chargino coan. $\begin{pmatrix} m_{\tilde{\chi}_{1}^{\pm}} \\ m_{\tilde{\chi}_{1}^{0}} \\ -1 \\ 0.1 \\ \end{pmatrix} < 0.1$

difficult to explain $(g-2)_{\mu}$

Phenomenological MSSM

phenomenological approach

- MSSM has >120 parameters but most are off-diagonal entries of $m_{\tilde{f}}, A_f$ and CP phases. \rightarrow set them zero
- FCNC constraints (1-2 gen.)

$$\ \ \, \rightarrow \ \ \, m_{\tilde{f}_1} = m_{\tilde{f}_2}$$

left with 19 parameters = pMSSM-19

pMSSM-10

pMSSM-10

Universal Mass Limit

$m_{\tilde{g}}, m_{\tilde{q}_3}, m_{\tilde{\chi}_1^0} =$	(1000, 700,	$(100)\mathrm{GeV}$
--	-------------	---------------------

Spectra	NS0	NS1	NS2	NS3	NS4
sparticle	$ ilde{g}$	$ ilde{g}$	$ ilde{g}$	$ ilde{g}$	$ ilde{g}$
content	$ ilde{t_1}, ilde{t_2}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}, ilde{b_2}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}, ilde{b_2}$
			$ ilde{\chi}_0^2$	$ ilde{\chi}_0^2$	$ ilde{\chi}_0^2$
			$ ilde{\chi}^{\pm}$	$ ilde{\chi}^{\pm}$	$\tilde{\chi}^{\pm}, \tilde{\ell}_{L,R}$
	$ ilde{\chi}^1_0$	$ ilde{\chi}_0^1$	$ ilde{\chi}_0^1$	$ ilde{\chi}_0^1$	$ ilde{\chi}_0^1$
main	$\tilde{g} \to t \tilde{t}_{1,2}$	$\tilde{g} \to t \tilde{t}_{1,2}, b \tilde{b}_1$	$\tilde{g} \to t \tilde{t}_{1,2}, b \tilde{b}_1$	$\tilde{g} \to t \tilde{t}_{1,2}, b \tilde{b}_{1,2}$	$\tilde{g} \to t \tilde{t}_{1,2}, b \tilde{b}_{1,2}$
decay	$\tilde{t}_{1,2} \to t \tilde{\chi}_0^1$	$\tilde{t}_{1,2} \rightarrow t \tilde{\chi}_0^1$	$\tilde{t}_{1,2} \rightarrow t \tilde{\chi}_0^{1,2}, b \tilde{\chi}^{\pm}$	$\tilde{t}_{1,2} \rightarrow t \tilde{\chi}_0^{1,2}, b \tilde{\chi}^{\pm}$	$\tilde{t}_{1,2} \to t \tilde{\chi}_0^{1,2}, b \tilde{\chi}^{\pm}$
chains		$ ilde{b}_1 ightarrow b ilde{\chi}_0^1$	$\tilde{b}_1 \rightarrow b \tilde{\chi}_0^2, t \tilde{\chi}^{\pm}$	$\tilde{b}_{1,2} \rightarrow b \tilde{\chi}_0^2, t \tilde{\chi}^{\pm}$	$\tilde{b}_{1,2} \rightarrow b \tilde{\chi}_0^2, t \tilde{\chi}^{\pm}$
			$\tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}_0^1$	$\tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}_0^1$	$\tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}_0^1$
			$\tilde{\chi}_0^2 \to Z \tilde{\chi}_0^1$	$\tilde{\chi}_0^2 \to Z \tilde{\chi}_0^1$	$\tilde{\chi}_0^2 \to Z \tilde{\chi}_0^1, \tilde{\ell} \ell$
					$\tilde{\ell} ightarrow \ell \tilde{\chi}_0^1$

Universal Mass Limit

"If the variety of channels are combined, the limit becomes insensitive to the topology."

O.Buchmueller, J.Marrouche '14

Universal Mass Limit

We create **4D lookup table** using the full simulation chain.

Grid: $(m_{\tilde{g}}, m_{\tilde{q}_{1,2}}, m_{\tilde{q}_3}, m_{\tilde{\chi}_1^0})$

Searches
Monojet
0-lepton $(M_{\rm T2})$
single-lepton $(M_{\rm T2}^{\rm W})$
SS-dilepton
OS-dilepton
\geq 3-lepton

validated with the full simulation chain using random 10³ points

EW SUSY searches

The universal mass limit does not work well for EW SUSY particles.

The EW SUSY sector is comprised of a few particles (effectively simplified model).

We construct χ^2 as

Validation

Comparison using random 10³ points

Compressed Stop searches

The universal mass limit does not work well for the compressed stop region.

We construct χ^2 as based on simplified models

$$\chi^2_{\text{stop}} = \sum_i f_i(m_{\tilde{t}}, m_{\tilde{\chi}^0_1}) \times B_i$$

Validation

Result

Best Fit

Best Fit

"prediction"

1 σ : $|\mu| < 1 \,\text{TeV}$ $M_1 \simeq M_2 < 500 \,\text{GeV}$ $m_{\tilde{\ell}} < 1 \,\text{TeV}$

Best Fit

"prediction"

$$\begin{aligned} & \textbf{O:} \quad |\mu| < 1 \, \text{TeV} \\ & M_1 \simeq M_2 < 500 \, \text{GeV} \\ & m_{\tilde{\ell}} < 1 \, \text{TeV} \end{aligned}$$

 $\begin{array}{ll} 2\sigma: & M_1 < 500 \, {\rm GeV} \\ & m_{\tilde{\ell}} < 1 \, {\rm TeV} \end{array}$

Discovery @ ILC

- The 500 GeV ILC can explore a large part of the low χ^2 region.
- The 1 TeV ILC can explore the low χ^2 region.

tanß

Higgses

No tension with the Higgs mass

Heavy Higgses may be around the corner

Gluinos

Stop, Chargino

- Light stop (<500GeV) @ 2σ
- Chargino1 ~ Neutralino1 @ 1σ after LHC constraints

Stop, Chargino

- 1σ: exclusively chargino coannihilation
- 2σ: stau coannihilation, h/Z funnel
- large part of stau and funnel regions will be explored at LHC

No Tachyon @ GUT scale

Require no negative m² at GUT scale

excludes small sfermion masses at low energy

Stop mass > 800GeV @ 2σ

• Chargino1 ~ Neutralino1 @ 2σ

LHC Run-2

HL-LHC can cover most of the 2σ region

standard searches are not sensitive to the 1σ region

should look for soft objects

DM direct detection

- 1σ: will be explored by LZ
- complementarity with the LHC SUSY searches

Global fit

tells us the status of models helps us to come up with strategy of discovery becomes more important after the discovery

Summary

pMSSM 10 fit

sampled 10⁹ points

Result

	X²/n _{dof}	p-value
CMSSM	32.8/24	11 %
NUHM1	31.1/23	12 %
NUHM2	30.3/22	11 %
pMSSM10	20.5/18	31 %

Implication

- $M_1 < 500 GeV$, $M_{slepton} < 1 TeV @ 2\sigma$
- Chargino1 ~ Neutralino1 @ 1σ

HL-LHC and **LZ** DM detection can explore the preferred region!

fast calculation of LHC limit

pMSSM10 looks healthy

- Higgs
 Dark Matter
 (g-2)_µ
- Market SUSY limit