PHENOMENOLOGY OF ENHANCED LIGHT QUARK YUKAWA COUPLINGS

[1603.xxxxx] **Felix Yu JGU Mainz**

"New Physics at the LHC," DFG Research Unit 2239 Meeting, JGU Mainz March 7, 2016

Introduction and Motivation

- Post-discovery precision Higgs program at LHC motivated by SM consistency test and NP expectations
	- Mass, spin/parity, couplings, total width, exotic production and decay modes
- Central role of Higgs in SM makes it a prime phenomenological target for NP models
	- Naturalness, DM, general Higgs portal, new gauge groups, flavor models

Mass-coupling degeneracy in SM

- Test one-toone prediction between mass and Higgs coupling in SM
- Any deviation will signal profound new physics
- Prospects for light quark Yukawas?

Outline

- Review current suite of measurement possibilities
- LHC W[±] h production charge asymmetry – Effects from nonstandard light quark Yukawas
- Collider study: same-sign leptons from $W^{\pm} h \rightarrow (I^{\pm} v)$ (l[±]νjj)
	- $-$ SM W^{\pm} h discovery channel
- Signal strengths effects from enhanced light quark Yukawas

– W[±] h production, *s*-channel Higgs production

• Conclusions

- SM fermions are chiral, hence Yukawa deviations require new sources of $SU(2)$ _l breaking or new fermions with vector-like masses
	- Motivates direct searches for new vector-like fermion partners – top partners are a prime example
	- Also, search for heavy Higgses
		- 2HDM particles: H^0 , A, H^{\pm}
		- Many possible Yukawa structures

- Measure in rare decays: *e.g.* h → J/ψ γ
	- Yukawa contribution interferes with loop-induced vertex with virtual gamma/Z
		- Isidori, Manohar, Trott [1305.0663]
		- Kagan, Perez, Petriello, Soreq, Stoynev, Zupan [1406.1722]
		- Bodwin, Chung, Ee, Lee, Petriello [1407.6695]
		- Perez, Soreq, Stamou, Tobioka [1503.00290, 1505.06689]
		- König, Neubert [1505.03870]

Measure in rare decays

Bodwin, et. al. [1407.6695]

 $\mathcal{B}_{\rm SM}(H \to J/\psi + \gamma) = 2.79^{+0.16}_{-0.15} \times 10^{-6}$,

Br(
$$
h \to J/\psi \gamma
$$
) = (2.95 ± 0.07_{f_{J/\psi}} ± 0.06_{direct} ± 0.14_{h\to\gamma\gamma}) · 10⁻⁶

$$
Br(h \to \Upsilon(1S)\,\gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} \, {}^{+ 1.75}_{- 1.21} \, {}^{+ 1.75}_{- 1.21} \, {}^{+ 1.75}_{- 1.21} \, {}^{+ 1.75}_{- 1.21}
$$

König, Neubert [1505.03870]

CMS [1507.03031]

- Measure in direct decays
	- Use bottom and charm tagging in tandem to profile over enhanced charm content in Higgs decays

$$
\mu_b \equiv \frac{\sigma_h BR_{b\bar{b}}}{\sigma_h^{\rm SM} BR_{b\bar{b}}^{\rm SM}} \rightarrow \frac{\sigma_h BR_{b\bar{b}} \epsilon_{b_1} \epsilon_{b_2} + \sigma_h BR_{c\bar{c}} \epsilon_{c_1} \epsilon_{c_2}}{\sigma_h^{\rm SM} BR_{b\bar{b}}^{\rm SM} \epsilon_{b_1} \epsilon_{b_2} + \sigma_h^{\rm SM} BR_{c\bar{c}}^{\rm SM} \epsilon_{c_1} \epsilon_{c_2}}
$$

- Measure in direct decays
	- Use bottom and charm tagging in tandem to profile over enhanced charm content in Higgs decays

Perez, et. al. [1505.06689] Perez, et. al. [1505.06689]

• Charm Yukawa: Measure in h+c production, use h→γγ (fixed to SM BR)

 4.25

4.5

 $-p_T(j)$ > 20 GeV

 $0.25 \mid 0.5 \mid 0.75 \mid$

3

 $|\kappa_c|$

 2.25

 κ_c ||

874

2.5

2.75

 $-$ charm tag = 40%, gluon fake rate = 1%, b fake rate= 30%

TABLE I. Number of Signal events $S(\kappa_c)$ in dependence on the charm-quark Yukawa coupling. See text for details.

 3.25

 $\overline{1}$

877 | 885 | 899 | 917 | 941 | 973 | 1008 | 1052

3.5

 $|1.25|1.5|1.75$

3.75

 $\overline{4}$

- Direct Higgs width measurements
	- Generally expect large Yukawas to rapidly increase Higgs width

• Indirect Higgs width measurements

Importance of direct probes

- Combined fit for Higgs couplings can and do give best sensitivity to nonstandard Yukawas
	- Caveat: need model-dependent assumptions to overdetermine system of constraints
		- At LHC, total Higgs width is not (expected to be) directly measurable

$$
N_{\text{events}} = \mathcal{L}\sigma \times B \propto \frac{g_p^2 g_d^2}{\Gamma_{\text{tot}}} \sim \frac{g_p^2 g_d^2}{\sum_i \Gamma_{i,\text{vis}} + \Gamma_{\text{unobs}}}
$$

– Cannot go beyond self-consistency test without assumptions about nature of NP

New feature: W[±]h charge asymmetry

- W^{\pm} h production asymmetric at LHC
	- Asymmetry driven by PDFs
	- Consider W⁺h:

New feature: W[±]h charge asymmetry

- W^{\pm} h production asymmetric at LHC
	- Asymmetry driven by PDFs
	- Consider W–h:

h

Inclusive charge asymmetry

PDF behavior

- In SM, net positive asymmetry driven by ud, mitigated by cs (neglect Cabibbo angle) _ _
	- For enhanced y_d or y_u, charge-asymmetric PDFs take over
	- $-$ For enhanced y_s or y_c , charge-symmetric PDFs dominate
		- Important, subleading corrections from Cabibbo angle

Measuring W⁺h, W–h rates

PRELIMINARY

• Consider all possible final states that can give clean lepton asymmetry measurement

Using Standard Model BRs, include leptonic decays, # events for 14 TeV LHC

• Focus on same-sign dilepton signature

– Inherits charge asymmetry from production

- Signal
	- $-\mathsf{W}^{\pm}$ h \rightarrow (I^{\pm}v) (I^{\pm}vjj): Final state is two same-sign leptons, one or two resolved jets, some missing transverse energy
- **Backgrounds**
	- W[±]W[±] jj
	- W[±]Z, Z decays leptonically (and OS lepton lost)
	- W⁺W– with charge mis-identification rates:
		- electrons: 0.16% for 0 < | η | < 1.479, 0.3% for 1.479 < | η | < 3
		- muons: negligible

CMS-DP-2015-035

PRELIMINARY

- Initial efficiencies already account for leptonic BRs
- Reduce W⁺W⁻ by same charge requirement
- Reduce $W^{\pm}W^{\pm}$ jj by m_{jj} < 120 GeV cut

– Also cut on transverse mass differences

Cut, survival efficiency		SM $W^{\pm}h W^{\pm}W^{\pm}ij$	W^+Z	W^-Z	W^+W^-
Exactly two leptons, $p_T > 20 \text{ GeV}$	46.3%	23.9%	34.8%	34.4%	34.2%
Same-charge leptons	46.2%	23.4\%	6.9%	7.2%	0.054%
Either one or two jets, $p_T > 20 \text{ GeV}$	31.6%	15.8%	3.6%	4.0%	0.026%
$m_{ij} < 120 \text{ GeV}$	28.7%	8.8%	3.0%	3.3%	0.020%
m_T , subleading $\ell_{jj} < 150 \text{ GeV}$	19.0%	2.0%	1.7%	1.9%	0.0078%
Number of events		$360 + 236 292 + 166 1960 + 5 3 + 1423 58 + 70$			
Statistical significance, 300 fb ⁻¹ , $S/\sqrt{S+B}$	6.97σ , 5.42σ				

PRELIMINARY

- Further optimization still underway
	- Separating transverse mass cuts by jet multiplicity
	- Adding overall ΔR separation between subleading lepton and jets

PRELIMINA

- Discovery senstivity for W⁺h and W⁻h production with 300 fb⁻¹ luminosity
	- However, effective BR for $h \to l^{\pm}$ vij decreases as Higgs width increases from large Yukawas

Effective signal strengths from large

Yukawas

- Individually rescale light quark Yukawas
- Width increase partially mitigated by new production modes
	- $-$ W^{\pm}h associated production

$$
\mu_{Wh} = \frac{(\sigma_{Wh}^{\text{NP}})}{(\sigma_{Wh}^{\text{SM}})} \times \frac{\Gamma(h \to X)^{\text{NP}} / \Gamma_{\text{tot}}^{\text{NP}}}{\Gamma(h \to X)^{\text{SM}} / \Gamma_{\text{tot}}^{\text{SM}}}
$$

– Gluon fusion and quark-initiated *s*-channel production

$$
\mu_{gg} = \frac{(\sigma_{gg}^{\rm NP} + \sigma_{qq}^{\rm NP})}{(\sigma_{gg}^{\rm SM})} \times \frac{\Gamma(h \to X)^{\rm NP}/\Gamma_{\rm tot}^{\rm NP}}{\Gamma(h \to X)^{\rm SM}/\Gamma_{\rm tot}^{\rm SM}}
$$

Wh signal strength

PRELIMINARY

gg signal strength

PRELIMINARY

Effective signal strengths from large Yukawas

- Extra colored states (new vector-like quarks to induce large Yukawas for light quarks) can easily bring gg signal strength back to SM expectation
- More difficult for Wh signal strength
	- Careful balance between hVV coupling and Yukawa
	- $-$ Large y_d , y_u deviations possible with little observable effect
- Same-sign lepton and charge asymmetry study still useful self-consistency test of Higgs
	- On same footing as indirect width test

Conclusions

- New same-sign dilepton channel for testing Higgs properties
	- Need UV completion to fully determine nonstandard Yukawa prospects
	- For model with enhanced hVV coupling or decreased SM partial widths (*e.g.* hbb), charge asymmetry probe can cover same range as other techniques
		- Different systematics and experimental challenges than charm tagging and rare decays

• Same-sign lepton channel also useful probe for Higgs coupling to vectors

- $-$ O(1000) deviation in y_u and y_d should be probed with ggF tests, Higgs + jet measurements
- No immediate test to disentangle many simultaneous Yukawa deviations

• Deviations in y_s or y_c (or any Yukawa) must be NP

– Effective operator estimate (integrate out VLQs)

$$
\mathcal{L} \supset yH\overline{Q}_L u_R + y'\frac{H^{\dagger}H}{\Lambda^2}H\overline{Q}_L u_R + \text{ h.c.}
$$

$$
m_q = v \left(y + y' \frac{v^2}{\Lambda^2} \right) \qquad \qquad y_q = \left(y + 3y' \frac{v^2}{\Lambda^2} \right)
$$

$$
\kappa_q \equiv \frac{y_q}{m_q/v} = \frac{\left(y + 3y'\frac{v^2}{\Lambda^2}\right)}{\left(y + y'\frac{v^2}{\Lambda^2}\right)} = 1 + \frac{2y'\frac{v^2}{\Lambda^2}}{y_{SM}}
$$

– General argument to obtain large Yukawas for light fermions and the contract of t