PHENOMENOLOGY OF ENHANCED LIGHT QUARK YUKAWA COUPLINGS

Felix Yu JGU Mainz [1603.xxxx]

"New Physics at the LHC," DFG Research Unit 2239 Meeting, JGU Mainz March 7, 2016

Introduction and Motivation

- Post-discovery precision Higgs program at LHC motivated by SM consistency test and NP expectations
 - Mass, spin/parity, couplings, total width, exotic production and decay modes
- Central role of Higgs in SM makes it a prime phenomenological target for NP models
 - Naturalness, DM, general Higgs portal, new gauge groups, flavor models

Mass-coupling degeneracy in SM

- Test one-toone prediction
 between mass
 and Higgs
 coupling in SM
- Any deviation will signal profound new physics
- Prospects for light quark Yukawas?

Outline

- Review current suite of measurement possibilities
- LHC W[±] h production charge asymmetry

 Effects from nonstandard light quark Yukawas
- Collider study: same-sign leptons from $W^{\pm}h \rightarrow (I^{\pm}v)$
 - (l⁺vjj)
 - SM W[±] h discovery channel
- Signal strengths effects from enhanced light quark Yukawas

– W[±] h production, *s*-channel Higgs production

Conclusions

- SM fermions are chiral, hence Yukawa deviations require new sources of SU(2)_L breaking or new fermions with vector-like masses
 - Motivates direct searches for new vector-like fermion partners – top partners are a prime example
 - Also, search for heavy Higgses
 - 2HDM particles: H⁰, A, H[±]
 - Many possible Yukawa structures

- Measure in rare decays: *e.g.* $h \rightarrow J/\psi \gamma$
 - Yukawa contribution interferes with loop-induced vertex with virtual gamma/Z
 - Isidori, Manohar, Trott [1305.0663]
 - Kagan, Perez, Petriello, Soreq, Stoynev, Zupan [1406.1722]
 - Bodwin, Chung, Ee, Lee, Petriello [1407.6695]
 - Perez, Soreq, Stamou, Tobioka [1503.00290, 1505.06689]
 - König, Neubert [1505.03870]

Measure in rare decays

Bodwin, et. al. [1407.6695]

 $\mathcal{B}_{\rm SM}(H \to J/\psi + \gamma) = 2.79^{+0.16}_{-0.15} \times 10^{-6},$

$$Br(h \to J/\psi \gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{direct} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Br(h \to \Upsilon(1S) \gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} + 1.75_{-1.21 \text{ direct}} \pm 0.22_{h \to \gamma\gamma}) \cdot 10^{-9},$$

König, Neubert [1505.03870]

CMS [1507.03031]

- Measure in direct decays
 - Use bottom and charm tagging in tandem to profile over enhanced charm content in Higgs decays

M _H = 125 GeV	BR	Rel. error	Higgs XSWG [1307.1347]
H→bb	5.77E-1	+/- 3%	
H→cc	2.91E-2	+/- 12%	
H→ss	2.46E-4	+/- 5%	
Н→μμ	2.19E-4	+/- 6%	

$$\mu_{b} \equiv \frac{\sigma_{h} BR_{b\bar{b}}}{\sigma_{h}^{SM} BR_{b\bar{b}}^{SM}} \rightarrow \frac{\sigma_{h} BR_{b\bar{b}} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma_{h} BR_{c\bar{c}} \epsilon_{c_{1}} \epsilon_{c_{2}}}{\sigma_{h}^{SM} BR_{b\bar{b}}^{SM} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma_{h}^{SM} BR_{c\bar{c}}^{SM} \epsilon_{c_{1}} \epsilon_{c_{2}}}$$

Perez, et. al. [1505.06689]

- Measure in direct decays
 - Use bottom and charm tagging in tandem to profile over enhanced charm content in Higgs decays

Perez, et. al. [1505.06689]

- Charm Yukawa: Measure in h+c production, use h→γγ (fixed to SM BR)
 - $p_{T}(j) > 20 \text{ GeV}$
 - charm tag = 40%, gluon fake rate = 1%, b fake rate = 30%

Brivio, Goertz, Isidori [1507.02916]

1.25 1.5 1.75 0.25 0.5 0.75 1 κ_c 877 885 899 917 941 973 1008 1052 874 2.52.753 3.253.54.252.253.7544.5 κ_c 1097 | 1148 | 1206 | 1276 | 1350 | 1424 | 1504 | 1590 | 1683 | 1786 |

TABLE I. Number of Signal events $S(\kappa_c)$ in dependence on the charm-quark Yukawa coupling. See text for details.

- Direct Higgs width measurements
 - Generally expect large Yukawas to rapidly increase Higgs width

CMS [1312.5353]

• Indirect Higgs width measurements

Importance of direct probes

- Combined fit for Higgs couplings can and do give best sensitivity to nonstandard Yukawas
 - Caveat: need model-dependent assumptions to overdetermine system of constraints
 - At LHC, total Higgs width is not (expected to be) directly measurable

$$N_{\text{events}} = \mathcal{L}\sigma \times B \propto \frac{g_p^2 g_d^2}{\Gamma_{\text{tot}}} \sim \frac{g_p^2 g_d^2}{\sum_i \Gamma_{i,\text{vis}} + \Gamma_{\text{unobs}}}$$

 Cannot go beyond self-consistency test without assumptions about nature of NP

New feature: W[±]h charge asymmetry

- W[±]h production asymmetric at LHC
 - Asymmetry driven by PDFs
 - Consider W⁺h:

New feature: W[±]h charge asymmetry

- W[±]h production asymmetric at LHC
 - Asymmetry driven by PDFs
 - Consider W⁻h:

Inclusive charge asymmetry

PDF behavior

- In SM, net positive asymmetry driven by ud, mitigated by cs (neglect Cabibbo angle)
 - For enhanced y_d or y_u, charge-asymmetric PDFs take over
 - For enhanced y_s or y_c, charge-symmetric PDFs dominate
 - Important, subleading corrections from Cabibbo angle

Measuring W⁺h, W⁻h rates

PRELIMINARY

• Consider all possible final states that can give clean lepton asymmetry measurement

Using Standard Model BRs, include leptonic decays, # events for 14 TeV LHC

		H→bb	Н→үү	H → I ⁺ I I ⁺ I ⁻ (I=e,μ,τ)	H → I ⁺ I ⁻ I ⁺ I ⁻ (I=e,μ)	H → l ⁺ l ⁻ ν ν ν (l=e, μ or τ, ν=any)	H → I ⁺ I [−] νι νι (I=e or μ, ν=anγ)	Η→ττ	H → l ⁺ l [¯] q q (l=e,μ or τ, q=udcsb)	H → l ⁺ ν q q (*) (l=e or μ, q=udcsb)
W+h	300 fb ⁻¹	31382	124	15	7	1288	579	3438	204	1730
W+h	3 ab ⁻¹	313816	1244	152	69	12880	5785	34383	2036	17301
W⁻h	300 fb ⁻¹	19150	76	9	4	786	353	2098	124	1056
W⁻h	3 ab ⁻¹	191498	759	93	42	7860	3530	20982	1242	10557

Focus on same-sign dilepton signature

Inherits charge asymmetry from production

- Signal
 - W[±] h → (l[±]v) (l[±]vjj): Final state is two same-sign leptons, one or two resolved jets, some missing transverse energy
- Backgrounds
 - $W^{\pm}W^{\pm}jj$
 - W[±]Z, Z decays leptonically (and OS lepton lost)
 - W⁺W[–] with charge mis-identification rates:
 - electrons: 0.16% for 0 < $|\eta|$ < 1.479, 0.3% for 1.479 < $|\eta|$ < 3
 - muons: negligible

CMS-DP-2015-035

- Initial efficiencies already account for leptonic BRs
- Reduce W⁺W⁻ by same charge requirement
- Reduce W[±]W[±]jj by m_{ii} < 120 GeV cut

Also cut on transverse mass differences

Cut, survival efficiency	$\mathbf{SM} \ W^{\pm}h$	$W^{\pm}W^{\pm}jj$	W^+Z	W^-Z	W^+W^-	
Exactly two leptons, $p_T > 20$ GeV	46.3%	23.9%	34.8%	34.4%	34.2%	
Same-charge leptons	46.2%	23.4%	6.9%	7.2%	0.054%	
Either one or two jets, $p_T > 20 \text{ GeV}$	31.6%	15.8%	3.6%	4.0%	0.026%	
$m_{jj} < 120 { m ~GeV}$	28.7%	8.8%	3.0%	3.3%	0.020%	
$m_{T, \text{ subleading } \ell jj} < 150 \text{ GeV}$	19.0%	2.0%	1.7%	1.9%	0.0078%	
Number of events	360 + 236	292 + 166	1960 + 5	3 + 1423	58 + 70	
Statistical significance, 300 fb ⁻¹ , $S/\sqrt{S+B}$	$6.97\sigma, 5.42\sigma$					

- Further optimization still underway
 - Separating transverse mass cuts by jet multiplicity
 - Adding overall ΔR separation between subleading lepton and jets

Cut, survival efficiency	$\mathbf{SM} \ W^{\pm}h$	$W^{\pm}W^{\pm}jj$	W^+Z	W^-Z	W^+W^-	
Exactly two leptons, $p_T > 20$ GeV	46.3%	23.9%	34.8%	34.4%	34.2%	
Same-charge leptons	46.2%	23.4%	6.9%	7.2%	0.054%	
Either one or two jets, $p_T > 20 \text{ GeV}$	31.6%	15.8%	3.6%	4.0%	0.026%	
$m_{jj} < 120 \text{ GeV}$	28.7%	8.8%	3.0%	3.3%	0.020%	
$m_{T, \text{ subleading } \ell jj} < 150 \text{ GeV}$	19.0%	2.0%	1.7%	1.9%	0.0078%	
Number of events	360 + 236	292 + 166	1960 + 5	3 + 1423	58 + 70	
Statistical significance, 300 fb ⁻¹ , $S/\sqrt{S+B}$	$6.97\sigma, 5.42\sigma$					

- Discovery sensitivity for W⁺h and W⁻h production with 300 fb⁻¹ luminosity
 - However, effective BR for h \rightarrow l[±]vjj decreases as Higgs width increases from large Yukawas

Cut, survival efficiency	$\mathbf{SM} \ W^{\pm}h$	$W^{\pm}W^{\pm}jj$	W^+Z	W^-Z	W^+W^-	
Exactly two leptons, $p_T > 20$ GeV	46.3%	23.9%	34.8%	34.4%	34.2%	
Same-charge leptons	46.2%	23.4%	6.9%	7.2%	0.054%	
Either one or two jets, $p_T > 20 \text{ GeV}$	31.6%	15.8%	3.6%	4.0%	0.026%	
$m_{jj} < 120 { m ~GeV}$	28.7%	8.8%	3.0%	3.3%	0.020%	
$m_{T, \text{ subleading } \ell jj} < 150 \text{ GeV}$	19.0%	2.0%	1.7%	1.9%	0.0078%	
Number of events	360 + 236	292 + 166	1960 + 5	3 + 1423	58 + 70	
Statistical significance, 300 fb ⁻¹ , $S/\sqrt{S+B}$	$6.97\sigma, 5.42\sigma$					

Effective signal strengths from large

Yukawas

- Individually rescale light quark Yukawas
- Width increase partially mitigated by new production modes
 - W[±]h associated production

$$\mu_{Wh} = \frac{\left(\sigma_{Wh}^{\rm NP}\right)}{\left(\sigma_{Wh}^{\rm SM}\right)} \times \frac{\Gamma(h \to X)^{\rm NP} / \Gamma_{\rm tot}^{\rm NP}}{\Gamma(h \to X)^{\rm SM} / \Gamma_{\rm tot}^{\rm SM}}$$

- Gluon fusion and quark-initiated s-channel production

$$\mu_{gg} = \frac{\left(\sigma_{gg}^{\rm NP} + \sigma_{qq}^{\rm NP}\right)}{\left(\sigma_{gg}^{\rm SM}\right)} \times \frac{\Gamma(h \to X)^{\rm NP} / \Gamma_{\rm tot}^{\rm NP}}{\Gamma(h \to X)^{\rm SM} / \Gamma_{\rm tot}^{\rm SM}}$$

Wh signal strength

gg signal strength

Effective signal strengths from large Yukawas

- Extra colored states (new vector-like quarks to induce large Yukawas for light quarks) can easily bring gg signal strength back to SM expectation
- More difficult for Wh signal strength
 - Careful balance between hVV coupling and Yukawa
 - Large y_d, y_u deviations possible with little observable effect
- Same-sign lepton and charge asymmetry study still useful self-consistency test of Higgs
 - On same footing as indirect width test

Conclusions

- New same-sign dilepton channel for testing Higgs properties
 - Need UV completion to fully determine nonstandard Yukawa prospects
 - For model with enhanced hVV coupling or decreased SM partial widths (*e.g.* hbb), charge asymmetry probe can cover same range as other techniques
 - Different systematics and experimental challenges than charm tagging and rare decays

 Same-sign lepton channel also useful probe for Higgs coupling to vectors

- O(1000) deviation in y_u and y_d should be probed with ggF tests, Higgs + jet measurements
- No immediate test to disentangle many simultaneous Yukawa deviations

Deviations in y_s or y_c (or any Yukawa) must be NP

Effective operator estimate (integrate out VLQs)

$$\mathcal{L} \supset yH\overline{Q}_L u_R + y'\frac{H^{\dagger}H}{\Lambda^2}H\overline{Q}_L u_R + \text{ h.c.}$$

$$m_q = v\left(y + y'\frac{v^2}{\Lambda^2}\right) \qquad \qquad y_q = \left(y + 3y'\frac{v^2}{\Lambda^2}\right)$$

$$\kappa_q \equiv \frac{y_q}{m_q/v} = \frac{\left(y + 3y'\frac{v^2}{\Lambda^2}\right)}{\left(y + y'\frac{v^2}{\Lambda^2}\right)} = 1 + \frac{2y'\frac{v^2}{\Lambda^2}}{y_{SM}}$$

General argument to obtain large Yukawas for light fermions