Pushing Higgs Effective Theory to its Limits

Johann Brehmer

Universität Heidelberg

based on 1510.03443, 1602.05202

with Anke Biekötter, Ayres Freitas, David Lopez-Val, and Tilman Plehn

ABHM meeting in Mainz, March 07, 2016

What's on

This talk:

[JB, A. Freitas, D. Lopez-Val, T. Plehn 1510.03443]

- Higgs EFT to dimension 6
- Validity at the LHC
- Explicit comparison with full models in main Higgs observables
 - Scalar singlet
 - Vector triplet
- Next:

[A. Biekötter, JB, T. Plehn 1602.05202]

- To square or not to square dimension-6 amplitudes?
- How to improve description where dimension-6 approximation fails?

Higgs effective field theory

• New physics at $\Lambda \gg E_{LHC} \sim \nu$?

[W. Buchmuller, D. Wyler 85; ...]

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \underbrace{\sum_{i}^{59} \frac{f_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}}_{i}}_{\mathbf{e.g.} \mathcal{O}_{GG}} = \underbrace{(\phi^{\dagger}\phi) G_{\mu\nu}^{a} G^{\mu\nu a}}_{\mathcal{O}_{W}}, \qquad + \mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)$$
$$\underbrace{\mathcal{O}_{W} = (D^{\mu}\phi)^{\dagger} \sigma^{k} (D^{\nu}\phi) W_{\mu\nu}^{k} \dots}_{\mathcal{O}_{W}}$$

Higgs effective field theory

• New physics at $\Lambda \gg E_{LHC} \sim \nu$?

 $\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} +$

[W. Buchmuller, D. Wyler 85; ...]

e.g.
$$\mathcal{O}_{GG} = (\phi^{\dagger}\phi) G^{a}_{\mu\nu} G^{\mu\nu a}$$
,
 $\mathcal{O}_{W} = (D^{\mu}\phi)^{\dagger} \sigma^{k} (D^{\nu}\phi) W^{k}_{\mu\nu} \dots$

 $\sum_{i=1}^{59} \frac{f_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}$

+
$$\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

 Perfect language for indirect signatures at electroweak scale?

- Model independence?
- Correlations between LEP, LHC TGV, Higgs, ...
- Total rates + distributions

Dimension 6 vs LHC accuracy

• LHC new physics reach (based on Higgs rates at 10% accuracy):

$$\left| \frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1 \right| \sim \frac{g^2 m_h^2}{\Lambda^2} > 10\% \qquad \Leftrightarrow \qquad \Lambda < \frac{g m_h}{\sqrt{10\%}} \stackrel{g<1}{<} 400 \text{ GeV}$$

Dimension 6 vs LHC accuracy

• LHC new physics reach (based on Higgs rates at 10% accuracy):

$$\left| \frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1 \right| \sim \frac{g^2 \, m_h^2}{\Lambda^2} > 10\% \qquad \Leftrightarrow \qquad \Lambda < \frac{g \, m_h}{\sqrt{10\%}} \stackrel{g<1}{<} 400 \, \mathrm{GeV}$$

• Global fit: [T. Corbett, O. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn, M. Rauch 1505.05516]

⇒ Weakly interacting models currently probed at LHC do not guarantee a scale hierarchy $\Lambda \gg E$

Testing the dimension-6 approach

- Idea: compare full models vs their dimension-6 approximation explicitly
- Benchmarks:
 - Scalar singlet
 - Two-Higgs-doublet model
 - Scalar top partners
 - Vector triplet

- Observables:
 - Higgs production in gluon fusion, WBF, Higgs-strahlung
 - Representative decays:
 γγ, 4ℓ, 2ℓ 2ν, ττ
 - Higgs pair production

- ► Tools:
 - Tree level: MadGraph with FeynRules models [A. Alloul, B. Fuks, V. Sanz 1310.5150]
 - Loop effects: reweighting technique based on LoopTools
 - HDecay, HiggsSignals, HiggsBounds, 2HDMC...

[see also A. Biekötter, A. Knochel, M. Krämer, D. Liu, F. Riva 1406.7320; C. Englert, M. Spannowsky 1408.5147; M. de Vries 1409.4657; N. Craig, M. Farina, M. McCullough, M. Perelstein 1411.0676; S. Dawson, I. M. Lewis, M. Zeng 1501.04103; A. Drozd, J. Ellis, J. Quevillon, T. You 1504.02409; A. Freitas, J. Gonzalez-Fraile, D. Lopez-Val, T. Plehn 16xx.xxxxx]

EFT matching without a clear scale hierarchy

• Electroweak VEV introduces new scales:

Standard matching

[B. Henning, X. Lu, H. Murayama 1412.1837]

- Defined in unbroken electroweak phase: $\Lambda = M$
- Truncates all dim-8 terms ⇒ blind to VEV effects

EFT matching without a clear scale hierarchy

• Electroweak VEV introduces new scales:

Standard matching

[B. Henning, X. Lu, H. Murayama 1412.1837]

 $\pm gv^2$

- Defined in unbroken electroweak phase: $\Lambda = M$
- Truncates all dim-8 terms \Rightarrow blind to VEV effects
- v-improved matching
 - Incorporates VEV effects into matching: $\Lambda = m$
 - · Can be understood as partial absorption of higher-dimensional operators:

 $\underline{m^2} = \underline{M^2}$

physical mass new physics scale in \mathcal{L}

$$\frac{c_i^{(6)}}{M^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(8)}}{M^4} \left(\phi^{\dagger}\phi\right) \mathcal{O}_i^{(6)} \rightarrow \frac{c_i^{(6)} + c_i^{(8)} v^2 / M^2 + \dots}{M^2} \mathcal{O}_i^{(6)} = \frac{c_i^{(6)}}{m^2} \mathcal{O}_i^{(6)}$$

Singlet

Full model:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \mu_2^2 S^2 - \lambda_2 S^4 - \lambda_3 |\phi^{\dagger} \phi| S^2$$

New *H* resonance Universal reduction of *hxx* couplings *hh* structures Singlet

Full model:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \mu_2^2 S^2 - \lambda_2 S^4 - \lambda_3 |\phi^{\dagger} \phi| S^2$$

New *H* resonance Universal reduction of *hxx* couplings *hh* structures

	$\sigma_{ m default EFT}/\sigma_{ m full}$			0	$\sigma_{v\text{-improved EFT}}/\sigma_{\text{full}}$			
	ggF	WBF	Vh	g	IgF	WBF	Vh	
S1	1.01	1.01	1.00	1	.00	1.00	1.00	
S2	1.02	1.02	1.02	1	.00	1.00	1.00	
S3	1.12	1.12	1.12	1	.00	1.00	1.00	
S4	0.98	0.98	0.98	1	.00	1.00	1.00	
S5	0.93	0.93	0.93	1	.00	1.00	1.00	

$p p \rightarrow h h (S4)$

Dim-6 approximation:

$$\mathcal{L} \supset rac{f_{\phi 2}}{\Lambda^2} \, \partial^\mu(\phi^\dagger \phi) \, \partial_\mu(\phi^\dagger \phi)$$

Vector triplet

Full model:

$$\begin{split} \mathcal{L} &\supset -\frac{1}{4} \, V_{\mu\nu}^a \, V^{\mu\nu\,a} + \frac{M_V^2}{2} \, V_{\mu}^a \, V^{\mu\,a} \\ &\quad + \frac{g^2}{2g_V} \, V_{\mu}^a \, c_F \overline{F}_L \, \gamma^\mu \, \sigma^a \, F_L \\ &\quad + \mathrm{i} \, \frac{g_V}{2} \, c_H \, V_{\mu}^a \left[\phi^\dagger \sigma^a \, \overrightarrow{D}^\mu \, \phi \right] \\ &\quad + g_V^2 \, c_{VVHH} \, V_{\mu}^a \, V^{\mu a} \, \phi^\dagger \phi \end{split}$$

New ξ resonance Modification of hxx couplings New structures in WBF and Vh

> [D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer 1402.4431; A. Biekötter, A. Knochel, M. Krämer, D. Liu, F. Riva 1406.7320]

Vector triplet

Full model:

$$\begin{split} \mathcal{L} &\supset -\frac{1}{4} \, V_{\mu\nu}^{a} \, V^{\mu\nu\,a} + \frac{M_{V}^{2}}{2} \, V_{\mu}^{a} \, V^{\mu\,a} \\ &\quad + \frac{g^{2}}{2g_{V}} \, V_{\mu}^{a} \, c_{F} \overline{F}_{L} \, \gamma^{\mu} \, \sigma^{a} \, F_{L} \\ &\quad + \mathrm{i} \, \frac{g_{V}}{2} \, c_{H} \, V_{\mu}^{a} \left[\phi^{\dagger} \sigma^{a} \, \overleftrightarrow{D}^{\mu} \, \phi \right] \\ &\quad + g_{V}^{2} \, c_{VVHH} \, V_{\mu}^{a} \, V^{\mu a} \, \phi^{\dagger} \phi \end{split}$$

Dim-6 approximation:

$$\mathcal{L} \supset -\frac{f_{WW}}{\Lambda^2} \frac{g^2}{4} (\phi^{\dagger} \phi) W^k_{\mu\nu} W^{\mu\nu k} - \frac{f_W}{\Lambda^2} \frac{\mathrm{i}g}{2} (D^{\mu} \phi^{\dagger}) \sigma^k (D^{\nu} \phi) W^k_{\mu\nu} + \dots$$

New ξ resonance Modification of hxx couplings New structures in WBF and Vh

 $\begin{array}{c} \star \\ \checkmark \\ (\checkmark) \end{array}$

[D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer 1402.4431; A. Biekötter, A. Knochel, M. Krämer, D. Liu, F. Riva 1406.7320]

Benchmark: $m_{\xi} = 1.2 \text{ TeV}, g_V = 3, c_H = -0.47, c_F = -5, c_{VVHH} = 2$

More on this in the next talk!

EFT breakdown summary

Model	Process	Dimension-6 errors				
		Resonance	Kinematics	Matching		
Singlet	on-shell $h \rightarrow 4\ell$, WBF, Vh ,			×		
	off-shell WBF,		(×)	×		
	hh	×	×	×		
2HDM	on-shell $h \rightarrow 4\ell$, WBF, Vh ,			×		
	off-shell $h \rightarrow \gamma \gamma$,		(×)	×		
	hh	×	×	×		
Top partners	WBF, Vh			×		
Vector triplet	WBF		(×)	×		
	Vh	×	(×)	×		

Conclusions

- LHC precision does not guarantee EFT convergence
- In practice, dimension-6 approximation performs well...
 - Higgs rates

(with *v*-improved matching)

• Distributions in WBF, Vh, ...

- - LHC precision does not guarantee EFT convergence
 - In practice, dimension-6 approximation performs well...
 - Higgs rates

Conclusions

- Distributions in WBF, Vh, …
- ...with exceptions:
 - New light resonances
 - Extreme high-energy tails in WBF, Vh
 - Higgs pair production
 - Naive matching procedure
- ⇒ Dimension-6 description of LHC Higgs physics works

obvious probably irrelevant irrelevant for now irrelevant for fits

(with *v*-improved matching)

Backup

12/22

Dimension-6 basis

$$\mathcal{L}_{\mathsf{dim-6}} = \mathcal{L}_{\mathsf{SM}} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i$$

$$\mathcal{O}_{\phi 1} = (D_{\mu}\phi)^{\dagger}\phi \phi^{\dagger}(D^{\mu}\phi) \qquad \qquad \mathcal{O}_{\phi 3} = \frac{1}{3}(\phi^{\dagger}\phi)^{3}$$

$$\mathcal{O}_{\phi 2} = \frac{1}{2}\partial^{\mu}(\phi^{\dagger}\phi)\partial_{\mu}(\phi^{\dagger}\phi) \qquad \qquad \mathcal{O}_{GG} = (\phi^{\dagger}\phi)G_{\mu\nu}^{a}G^{\mu\nu a}$$

$$\mathcal{O}_{BW} = -\frac{gg'}{4}(\phi^{\dagger}\sigma^{k}\phi)B_{\mu\nu}W^{\mu\nu k} \qquad \qquad \mathcal{O}_{BB} = -\frac{g'^{2}}{4}(\phi^{\dagger}\phi)B_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{O}_{B} = i\frac{g}{2}(D^{\mu}\phi^{\dagger})(D^{\nu}\phi)B_{\mu\nu} \qquad \qquad \mathcal{O}_{WW} = -\frac{g^{2}}{4}(\phi^{\dagger}\phi)W_{\mu\nu}^{k}W^{\mu\nu k}$$

$$\mathcal{O}_{W} = i\frac{g}{2}(D^{\mu}\phi)^{\dagger}\sigma^{k}(D^{\nu}\phi)W_{\mu\nu}^{k} \qquad \qquad \mathcal{O}_{f} = (\phi^{\dagger}\phi)\bar{F}_{L}\phi f_{R} + h.c.$$

[K. Hagiwara, S. Ishihara, S. R. Szalapski, D. Zeppenfeld 93]

Singlet: matching

$$V(\phi, S) = \mu_1^2 (\phi^{\dagger} \phi) + \lambda_1 |\phi^{\dagger} \phi|^2 + \mu_2^2 S^2 + \lambda_2 S^4 + \lambda_3 |\phi^{\dagger} \phi| S^2$$
$$m_H^2 = \lambda_1 v^2 + \lambda_2 v_s^2 + |\lambda_1 v^2 - \lambda_2 v_s^2| \sqrt{1 + \tan^2(2\alpha)}$$
$$= \sqrt{2\lambda_2} v_s + \mathcal{O} (v^2/v_s^2)$$
$$\frac{f_{\phi 2}}{\Lambda^2} = \begin{cases} \frac{\lambda_3^2}{4\lambda_2^2 v_s^2} & \text{default matching} \\ \frac{2(1 - \cos \alpha)}{v^2} & v \text{-improved matching} \end{cases}$$

with mixing angle α and singlet VEV v_s

Singlet: benchmarks

	Setup				Relative coupling shifts			
	m_H [GeV]	sin α	v_s/v		$\Delta_x^{\text{singlet}}$	$\Delta_x^{default EFT}$	$\Delta_x^{ u ext{-improved EFT}}$	
S1	500	0.2	10		-0.020	-0.018	-0.020	
S2	350	0.3	10		-0.046	-0.037	-0.046	
S3	200	0.4	10		-0.083	-0.031	-0.083	
S4	1000	0.4	10		-0.083	-0.092	-0.083	
S5	500	0.6	10		-0.200	-0.231	-0.200	

Vector triplet: matching

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{SM} - \frac{1}{4} V_{\mu\nu}^{a} V^{\mu\nu a} + \frac{M_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} + \frac{g_{w}^{2}}{2g_{V}} V_{\mu}^{a} c_{F} \overline{F}_{L} \gamma^{\mu} \sigma^{a} F_{L} \\ &+ i \frac{g_{V}}{2} c_{H} V_{\mu}^{a} \left[\phi^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} \phi \right] + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} \phi^{\dagger} \phi + \mathcal{O} \left(V^{2} W, V^{3} \right) \\ m_{\xi}^{2} &= M_{V}^{2} + \left(g_{V}^{2} c_{VVHH} + \frac{g_{V}^{2} c_{H}^{2}}{4} \right) v^{2} + \mathcal{O} \left(v^{4} / M_{V}^{2} \right) \\ \Lambda &= \begin{cases} M_{V} & \text{default matching} \\ m_{\xi} & v \text{-improved matching} \end{cases} \\ f_{WW} &= f_{BW} = -\frac{1}{2} f_{W} = c_{F} c_{H} \\ f_{\phi 2} &= -\frac{1}{4\lambda} f_{\phi 3} = \frac{3}{4} \left(-2 c_{F} g^{2} + c_{H} g_{V}^{2} \right) \\ f_{f} &= -\frac{1}{4} y_{f} c_{H} \left(-2 c_{F} g^{2} + c_{H} g_{V}^{2} \right) \end{aligned}$$

Vector triplet: benchmarks

_	m_{ξ} [GeV]	M_V [GeV]	g_V	c_H	c_F	c_{VVHH}
T1	1200	591	3.0	-0.47	-5.00	2.00
T2	1200	946	3.0	-0.47	-5.00	1.00
T3	1200	941	3.0	-0.28	3.00	1.00
T4	1200	1246	3.0	-0.50	3.00	-0.20
T5	849	846	1.0	-0.56	-1.32	0.08

	$\sigma_{\rm default EFT}/\sigma_{\rm full}$		$\sigma_{v-\text{improved EFT}}/\sigma_{\text{full}}$			
	WBF	Vh	WBF	Vh		
T1	1.30	0.30	0.98	0.79		
T2	1.05	0.74	0.99	0.91		
T3	0.92	1.07	0.97	1.02		
T4	1.03	0.97	1.01	0.98		
T5	1.00	1.04	1.00	1.04		

Vector triplet: more WBF

2HDM

hh structures

2HDM: benchmarks, results

	Туре	$\tan \beta$	α/π	m_{12}	m_{H^0}	m_{A^0}	$m_{H^{\pm}}$
D1	I	1.5	-0.086	45	230	300	350
D2	II	15	-0.023	116	449	450	457
D3	II	10	0.032	157	500	500	500
D4	I	20	0	45	200	500	500

	$\sigma_{v\text{-improved EFT}}/\sigma_{\text{full}}$					
	ggF	WBF	Vh			
D1	0.87	1.11	1.11			
D2	1.00	1.00	1.00			
D3	1.02	1.04	1.04			
D4	1.00	1.00	1.00			

23/22

Scalar top partners

Full model:

$$\mathcal{L} \supset (D_{\mu} \tilde{Q})^{\dagger} (D^{\mu} \tilde{Q}) + (D_{\mu} \tilde{t}_{R})^{*} (D^{\mu} \tilde{t}_{R})$$
$$-\tilde{Q}^{\dagger} M^{2} \tilde{Q} - M^{2} \tilde{t}_{R}^{*} \tilde{t}_{R}$$
$$-\kappa_{LL} (\phi \cdot \tilde{Q})^{\dagger} (\phi \cdot \tilde{Q}) - \kappa_{RR} (\tilde{t}_{R}^{*} \tilde{t}_{R}) (\phi^{\dagger} \phi)$$
$$- [\kappa_{LR} M \tilde{t}_{R}^{*} (\phi \cdot \tilde{Q}) + \text{h.c.}]$$

Dim-6 approximation:

$$\mathcal{L} \supset \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i$$

Loop effects in hgg, hyy

(Small) loop effects in WBF, Vh

[S. Dawson, I. M. Lewis, M. Zeng 1501.04103; A. Drozd, J. Ellis, J. Quevillon, T. You 1504.02409] (×)

 (\checkmark)

