Higgs Portal Fits to the Galactic Center Excess

[work in progress: Alessandro Cuoco, Benedikt Eiteneuer, JH, Michael Krämer]

Jan Heisig (RWTH Aachen University)

Meeting of the Research Unit **New Physics at the LHC** JGU Mainz - March 7th - 2016

Possible contribution: WIMP Dark Matter

Energy density of the universe:

WIMP Dark Matter: freeze-out

 Standard cosmological history: Well motivated "production" mechanism

WIMP Dark Matter: freeze-out

- Standard cosmological history: Well motivated "production" mechanism
- Conection between cosmology and particles

WIMP Dark Matter: annihilation today

Subtract: Diffuse foregrounds + Point sources

[see e.g. Calore, Cholis, Weniger]

 \Rightarrow Excess over the known foregrounds:

 \Rightarrow Excess over the known foregrounds:

Astrophysical explanation? [see e.g. 1405.7928, 1411.2980, 1506.05119]

 \Rightarrow Excess over the known foregrounds:

Astrophysical explanation? [see e.g. 1405.7928, 1411.2980, 1506.05119] Or signal of WIMP Dark Matter

1.0			I (0.80)	 VI(0.64)	
			I(0.03)	 VI(0.04)	
0.0			II(0.15)	 VII (0.55) $VIII (0.04)$	
0.8	-		$\Pi (0.13)$	 VIII (0.04)	
			IV(0.90)	 IX (0.19)	
_			V (0.20)	 X (0.31)	

 \Rightarrow Excess over the known foregrounds:

Can the signal be explained by simple DM models? (taking into account further constraints)

This talk:

→ "Simplest" Dark Matter model (Singlet Scalar)
 → Detailed numerical fit
 → Allow for additional DM components

Outline

The Model

Implementation

The galactic center excess Constraints

- Fit Results
- Conclusion

The Model

[Burgess, Pospelov, Veldhuis: hep-ph/0011335, ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_\mu S \partial^\mu S - \frac{1}{2} m_{S,0}^2 S^2 - \frac{1}{4} \lambda_S S^4 - \frac{1}{2} \lambda_{HS} S^2 H^{\dagger} H$$

(before EWSB)

[Burgess, Pospelov, Veldhuis: hep-ph/0011335, ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} \supset -\frac{1}{2}m_{S}^{2}S^{2} - \frac{1}{4}\lambda_{S}S^{4} - \frac{1}{4}\lambda_{HS}h^{2}S^{2} - \frac{1}{4}\lambda_{HS}vhS^{2},$$
where $m_{S}^{2} = m_{S,0}^{2} + \lambda_{HS}v^{2}/2.$ (after EWSB)

[Burgess, Pospelov, Veldhuis: hep-ph/0011335, ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} \supset -\frac{1}{2}m_{S}^{2}S^{2} \left(\frac{1}{4}\lambda_{S}S^{4} - \frac{1}{4}\lambda_{HS}h^{2}S^{2} - \frac{1}{4}\lambda_{HS}vhS^{2} \right),$$
where $m_{S}^{2} = m_{S,0}^{2} + \lambda_{HS}v^{2}/2.$ (after EWSB)

Important for vacuum stability

[Burgess, Pospelov, Veldhuis: hep-ph/0011335, ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} \supset -\frac{1}{2}m_S^2 S^2 \left(\frac{1}{4}\lambda_S S^4 \right) - \frac{1}{4}\lambda_{HS} h^2 S^2 - \frac{1}{4}\lambda_{HS} vhS^2 ,$$

where $m_S^2 = m_{S,0}^2 + \lambda_{HS} v^2/2.$ (after EWSB)

(Important for vacuum stability)

[Burgess, Pospelov, Veldhuis: hep-ph/0011335, ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

 $\mathcal{L} \supset \left(\frac{1}{2}m_{S}^{2}S^{2}\right) - \frac{1}{4}\lambda_{S}S^{4} \left(\frac{1}{4}\lambda_{HS}h^{2}S^{2} - \frac{1}{4}\lambda_{HS}vhS^{2}\right),$ where $m_{S}^{2} = m_{S,0}^{2} + \lambda_{HS}v^{2}/2.$ (after EWSB) Important for this work \Rightarrow Only two parameters: m_{S}, λ_{HS}

[Burgess, Pospelov, Veldhuis: hep-ph/0011335, ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

Implementation

Implementation: Galactic center excess

- Need gamma-ray spectrum
- Slow in fit \Rightarrow Pre-compute spectra for all channels (as function of DM mass) with MadGraph/Pythia 8
- During fit: Combine spectra according to contribution

Implementation: Galactic center excess

- Take measured spectrum d_i and covariance matrix Σ_{ij} from [Calore, Cholis, Weniger: 1409.0042]
- Additional uncertainty on the theoretical prediction of the spectrum $\Sigma_{ij} \rightarrow \Sigma_{ij} + \Sigma_{ij} \delta_{ij} t_i^2 \sigma_t^2$, $\sigma_t = 10\%$ [Achterberg et al. 1502.05703]
- Large theoretical uncertainties on DM distribution in galaxy:

Non-WIMP contribution to Dark Matter

- Allow for additional unspecified DM component
- Fraction of WIMP component:

$$R = \rho_{\rm WIMP} / \rho_{\rm DM, \, total}$$

- Assumption: same distribution
- \Rightarrow Rescaling of flux:

$$\phi \to R^2 \phi \quad \longleftarrow \begin{array}{l} \mbox{For indirect} \\ \mbox{detection} \end{array}$$

Implementation: Constraints

Implementation: Constraints

 $J_{40^{\circ} \times 40^{\circ}}/J_{40^{\circ} \times 40^{\circ}, \text{nom}}$

Implementation: Fitting tools

- Use MultiNest (nested sampling algorithm) [Feroz et al. 1306.2144]
- 4 scan parameters:

$$m_S: \quad 5 \dots 220 \text{ GeV}$$
$$\lambda_{HS}: \quad 3 \times 10^{-5} \dots 4\pi$$
$$\ln(\bar{J}/\bar{J}_{\text{nom}}): \quad -4\sigma_{\xi} \dots 4\sigma_{\xi}$$
$$R: \quad 10^{-3} \dots 1$$

- Cross sections and BRs: micrOMEGAs
- Frequentist interpretation

Fit results

Limits from gamma lines further tighten range for $\ln(\overline{J}/\overline{J}_{nom})$

preliminary

Summary

- WIMP DM intriguing explanation of GCE
- Higgs Portal: Unique coupling to minimal DM models
- Singlet Scalar Model: Good fit!
- After constraints: Only Higgs-resonance remains
- Allow for additional non-WIMP DM component
- Non-trivial implications for WIMP fraction near resonance (for large velocity dependence)

Backup slides: Spectrum for best-fit point (after all constraints)

Explain final result and R-factor

Jan Heisig (RWTH Aachen University)

ToDo

Best-fit points raussuchen

Parametric fits and theoretical uncertainties

- Take measured spectrum d_i and covariance matrix Σ_{ij} from [Calore, Cholis, Weniger: 1409.0042]
- Additional uncertainty on the theoretical prediction of the spectrum $\Sigma_{ij} \to \Sigma_{ij} + \delta_{ij} d_i^2 \sigma_s^2$, $\sigma_s = 10\%$
- Compute χ^2 via: [Achterberg et al. | 502.05703]

$$\chi^2 = \sum_{i,j} (d_i - 10^{\xi} m_i) (\Sigma_{ij})^{-1} (d_j - 10^{\xi} m_j) - \frac{\xi^2}{(\log_{10} 2)^2}$$

where
$$\xi = \log_{10} \left(\frac{J}{\overline{J}_{\text{best fit}}} \right)$$

 $J_{\rm best\,fit}^{\rm NFW}$ from [Calore, Cholis, Weniger: 1409.0042]

Jan Heisig (RWTH Aachen University)

Takes into account

uncertainties on the *l*-factor

Parametric fits to the Galactic center excess

Spectrum	Parameters	χ^{0} / $\frac{10^{-25}}{10^{-25}}$ p_{\pm} value VI (0.64)
broken PL	$\alpha_1 = 1.42^{+0.22}_{-0.31}, \ \alpha_2 = 2.63^{+0.13}_{-0.095}, \ E_{\text{break}} = 2.06^{+0.23}_{-0.17} \text{ GeV}$	$ \sqrt{1.06^{}} \frac{1.06^{}}{11.06^{}} \frac{1.06^{5}}{11.06^{5}} \frac{1}{10.015} $
DM $\chi\chi \to \bar{b}b$	$\langle \sigma v \rangle = 1.76^{+0.28}_{-0.27} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \ m_{\chi} = 49^{+6.4}_{-5.4} \text{ GeV}$	$1.08 - \frac{10}{2} (0.13) - 1$
DM $\chi\chi \to \bar{c}c$	$\langle \sigma v \rangle = 1.25^{+0.2}_{-0.18} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \ m_{\chi} = 38.2^{+4.6}_{-3.9} \text{ GeV}$	$ \begin{bmatrix} 0.61 \\ 0.61 \end{bmatrix} = 0.61 = 0.$
PL with exp. cutoff	$E_{\rm cut} = 2.53^{+1.1}_{-0.77} \text{ GeV}, \ \alpha = 0.945^{+0.36}_{-0.5}$	$\frac{1}{2}$ 1.37 ^{of} CL 0.16
DM $\chi\chi \to \tau^+\tau^-$	$\langle \sigma v \rangle = 0.337^{+0.047}_{-0.048} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \ m_{\chi} = 9.96^{+1.1}_{-0.91} \text{ GeV}$	$V \stackrel{6}{=} \stackrel{0.4}{1.52} / 0.065$
eisig (RWTH Aachen Unive	ersity) l	Aachen November 5, 2015

Jan H

[Burgess, Pospelov, Veldhuis: hep-ph/0011335, ...]

Extend Higgs sector by a scalar singlet s:

$$V(s^2, H^{\dagger}H) = \lambda_h \left[\left(H^{\dagger}H \right) - \frac{v^2}{2} \right]^2 + \frac{1}{2} \lambda_{hs} s^2 H^{\dagger}H + \frac{1}{4} \lambda_s s^4 + \frac{1}{2} m_{s_0}^2 s^2$$

After EW symmetry breaking:

$$V(s^{2},h) = V(h) + \frac{1}{2}m_{s}^{2}s^{2} + \frac{1}{4}\lambda_{s}s^{4} + \frac{1}{2}\lambda_{hs}vhs^{2} + \frac{1}{4}\lambda_{hs}h^{2}s^{2}$$
where $m_{s}^{2} = m_{s_{0}}^{2} + \lambda_{hs}v^{2}/2$.
Important for pheno

[also interesting in the context of WIMP Inflation, see e.g. Kahlhoefer, McDonald: 1507.03600 for a recent analysis]

Implementation: Constraints

Collider constraints: Higgs invisible BR

Constraints on the parameter space:

GCE fits versus constraints:

[see also Duerr, Pérez, Smirnov:1509.04282]

GCE fits versus constraints:

Jan Heisig (RWTH Aachen University)

• GCE fits:

Dark Matter \rightarrow WIMP

