PRECISION TOOLS AND MODELS TO NARROW IN ON THE 750 GEV diphoton resonance

Toby Opferkuch

Based on arXiv:1602.05581

in collaboration with

F. Staub, P. Athron, L. Basso, M. D. Goodsell, D. Harries, M. E. Krauss, K. Nickel, L. Ubaldi, A. Vicente and A. Voigt

ABHM Meeting Mainz

March 7, 2016

THE PURPOSE OF THIS TALK?

 $i)$ Emphasise a number of deficiencies in the diphoton literature

ii) Show how using SARAH framework can help to prevent these deficiencies

iii) Illustrate elements of a small complete example

Diphoton models

Composite Models

- \bullet $\mathcal{O}(20)$ papers
- Naturally broad resonance

Extra-dimensions

 \bullet $\mathcal{O}(10)$ papers

Perturbative Models

 \bullet $\mathcal{O}(200)$ papers

[All references in 1602.05581]

Diphoton models

Composite Models

- \bullet $\mathcal{O}(20)$ papers
- Naturally broad resonance

Extra-dimensions

 \bullet $\mathcal{O}(10)$ papers

Perturbative Models

 \bullet $\mathcal{O}(200)$ papers

[All references in 1602.05581]

DECAY WIDTH

Generic explanation involves loop-induced couplings to both photons and gluons 12 10 $b\overline{b} \rightarrow S$ ത്തര \triangle L_8/L_{13} CMS \mathbf{R} S $\sigma_{13\,\mathrm{TeV}}/\sigma_{8\,\mathrm{TeV}}$ $6\uparrow$ L_8/L_{13} ATLAS ന്തത NP $u\overline{u}$ [S. Knapen et al. 1512.04928] $\sqrt{ }$ 500 1000 1500 $\overline{2000}$ Important prediction of a model ັດ Mass of the resonance in GeV is the ratio $BR(S \to qq)/BR(S \to \gamma\gamma)$

[R. Franceschini et al 1512.04933]

DECAY WIDTH

Consider toy model containing:

Vector-like quarks Ψ (3, 2, 7/6) Singlet $S \t (1, 1, 0)$

$$
\mathcal{L}_Y \supset (M_{F_1} + Y_{F_1}S)\overline{\Psi_L}\Psi_R + \text{h.c.}
$$

[S. Knapen et al. 1512.04928]

DECAY WIDTH

Consider toy model containing:

Vector-like quarks Ψ (3, 2, 7/6) Singlet $S \t (1, 1, 0)$

$$
\mathcal{L}_Y \supset (M_{F_1} + Y_{F_1}S) \overline{\Psi_L} \Psi_R + \text{h.c.}
$$

[S. Knapen et al. 1512.04928]

CONCLUSION

- Small mismatch in LO result as $\alpha_{\rm em}(0) \neq \alpha_{\rm em}(M_S)$
- QCD corrections dominate over LO mismatch

Necessary decay rate depends on signal width

- Narrow width: $\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-6}$
- Large width: $\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-4}$

[R. Franceschini et al 1512.04933]

Necessary decay rate depends on signal width

- Narrow width: $\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-6}$
- Large width: $\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-4}$

[R. Franceschini et al 1512.04933]

HOW TO INCREASE THE WIDTH:

- ¹ Fermions with large Yukawa couplings
- ² Fermions/scalars with large multiplicity and/or electric charge
- **3** Scalars with large cubic couplings

Necessary decay rate depends on signal width

- Narrow width: $\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-6}$
- Large width: $\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-4}$

[R. Franceschini et al 1512.04933]

HOW TO INCREASE THE WIDTH:

- ¹ Fermions with large Yukawa couplings
- ² Fermions/scalars with large multiplicity and/or electric charge
- **3** Scalars with large cubic couplings

OPTION₁

Pert. calculation \Rightarrow Yukawa must remain perturbative $\lesssim \sqrt{4\pi}$

(Not required in composite models)

Necessary decay rate depends on signal width

• Narrow width: $\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-6}$

• Large width:
$$
\Gamma(S \to \gamma \gamma)/M_S \simeq 10^{-4}
$$

[R. Franceschini et al 1512.04933]

How to increase the width:

- ¹ Fermions with large Yukawa couplings
- ² Fermions/scalars with large multiplicity and/or electric charge
- **3** Scalars with large cubic couplings

Option 2 Must check for Landau poles Example: $SM + N_k$ generations of k^{++} [Kanemura et al. 1512.09048

Nomura et al. 1601.00386]

OPTION 3

Alternative to fermions with large Yukawas \longrightarrow scalars with large κ

$$
V \supset \kappa S|X|^2 + \frac{1}{2}M_S S^2 + M_X|X|^2 + \cdots
$$

Stability of the EW vacuum:

Mixing with the SM Higgs

Toy model with CP-even singlet S and electrically charged scalars X

$$
V = \frac{1}{2}M_S S^2 + M_X |X|^2 + \mu^2 |H|^2 + \kappa S |X|^2 + \kappa H S |H|^2
$$

+ $\lambda_S S^4 + \lambda_{SX} S^2 X^2 + \lambda_{H X} |H|^2 |X|^2 + \lambda |H|^4$

AT TREE-LEVEL

- Many studies choose $\kappa_H = 0 \Longrightarrow$ no mixing
- Non-zero mixing:
	- \Rightarrow tree-level decays \gg loop decays

Mixing with the SM Higgs

Toy model with CP-even singlet S and electrically charged scalars X

$$
V = \frac{1}{2}M_S S^2 + M_X |X|^2 + \mu^2 |H|^2 + \kappa S |X|^2 + \kappa H S |H|^2
$$

+ $\lambda_S S^4 + \lambda_{SX} S^2 X^2 + \lambda_{H X} |H|^2 |X|^2 + \lambda |H|^4$

AT TREE-LEVEL

- Many studies choose $\kappa_H = 0 \Longrightarrow$ no mixing
- Non-zero mixing: \Rightarrow tree-level decays \gg loop decays

Loop-level

MIXING WITH THE SM HIGGS

Toy model with CP-even singlet S and electrically charged scalars X

$$
V = \frac{1}{2}M_S S^2 + M_X |X|^2 + \mu^2 |H|^2 + \kappa S |X|^2 + \kappa H S |H|^2
$$

+ $\lambda_S S^4 + \lambda_{SX} S^2 X^2 + \lambda_{H X} |H|^2 |X|^2 + \lambda |H|^4$

AT TREE-LEVEL

- Many studies choose $\kappa_H = 0 \Longrightarrow$ no mixing
- Non-zero mixing: \implies tree-level decays \gg loop decays

Other considerations

- Similar arguments hold for vector-like fermions
- $\kappa_H \neq 0$ often required for pseudo-scalar masses
- Good solution: use CP to forbid unwanted tree-level decays (see later slide)

Loop-level

Typical assumption

 $v_S = 0$ at all orders

Typical assumption

 $v_S = 0$ at all orders

Tadpole equations

$$
\frac{\partial V^{(1L)}}{\partial v_S} = T^{(1L)} = T^{(T)} + \delta T = 0
$$

Assuming

$$
T^{(T)} = c_1 v_S + c_2 v_S^2 + c_3 v_S^3 = 0
$$

Tadpole equations

$$
\frac{\partial V^{(1L)}}{\partial v_S} = T^{(1L)} = T^{(T)} + \delta T = 0
$$

Assuming

$$
T^{(T)} = c_1 v_S + c_2 v_S^2 + c_3 v_S^3 = 0
$$

ONE-LOOP RESULTS

\n
$$
\delta T = \begin{cases}\n\kappa A(M_X^2) & \text{scalar loop} \\
2YM_\Psi A(M_\Psi^2) & \text{fermion loop}\n\end{cases}
$$
\n
$$
A(x^2) = \frac{1}{16\pi^2} x^2 \left[1 + \log\left(\frac{\mu^2}{x^2}\right)\right]
$$

RESULT

If $M_{\Psi} \sim \kappa \sim M_X \sim \mathcal{O}(1 \,\text{TeV})$ then $\delta T \simeq 1 \,\text{TeV}^3/(16 \pi^2 c_1)$

WHAT IS SARAH AND HOW DOES IT HELP?

WHAT IS SARAH AND HOW DOES IT HELP?

WHAT IS SARAH AND HOW DOES IT HELP?

Can consider a complete model without (erroneous) simplifying assumptions

What's new?

- diphoton and digluon effective vertices calulated
- SPheno then calculates decay width and production x-sec.
- \bullet Eff. vertices can be passed to MadGraph $\&$ CalcHep

DECAY WIDTH IMPLEMENTATION

$\Phi \rightarrow \gamma \gamma$

LO expressions for decay width implemented using $\alpha_{ew}(\mu=0)$

NLO SM corrections implemented for three limits:

- \bullet $m_{\Phi} < m_{f}$: corrections from heavy colour fermionic triplets
- \bullet m_{Φ} > 100m_f: analytic corrections in light quark limit

[M. Spira et al. hep-ph/9504378]

• Intermediate range: numerical values from HDECAY used

[Djouadi et al. hep-ph/9704448]

DECAY WIDTH IMPLEMENTATION

$\Phi \rightarrow \gamma \gamma$

LO expressions for decay width implemented using $\alpha_{ew}(\mu=0)$

NLO SM corrections implemented for three limits:

- \bullet $m_{\Phi} < m_{f}$: corrections from heavy colour fermionic triplets
- $m_{\Phi} > 100 m_f$: analytic corrections in light quark limit

[M. Spira et al. hep-ph/9504378]

• Intermediate range: numerical values from HDECAY used

[Djouadi et al. hep-ph/9704448]

$\Phi \rightarrow gg$

LO expressions for decay width implemented

N ³LO SM corrections implemented

[Baglio et al. 1312.4788

Kramer et al. hep-ph/961127

Chetyrkin et al. hep-ph/9705240, hep-ph/0512060

Schroder and Steinhauser hep-ph/0512058

Baikov and Chetyrkin hep-ph/0604194]

Only N^2LO corrections for pseudo-scalar Φ

[LHC Higgs Cross Section Working Group Collaboration, J. R. Andersen et al. 1307.1347]

[LHC Higgs Cross Section Working Group Collaboration, J. R. Andersen et al. 1307.1347]

[LHC Higgs Cross Section Working Group Collaboration, J. R. Andersen et al. 1307.1347]

[LHC Higgs Cross Section Working Group Collaboration, J. R. Andersen et al. 1307.1347]

 $\Delta^{(1)}$ conflict with limits from $S \to jj$, $\Delta^{(3)}$ we disagree with their diphoton rate

 $\Delta^{(1)}$ conflict with limits from $S \to jj$, $\Delta^{(2)}$ inconsistencies in charge assignments

 $\mathbb{A}^{(1)}$ conflict with limits from $S \to jj$

MODEL DETAILS

MODEL FEATURES

- Gauge sector extended by $U(1)_X$
- Tree-level Higgs mass enhancement (non-decoupling D-terms)
- CP-odd scalar acts as 750 GeV resonance
- Can potentially accommodate broad resonance

MODEL DETAILS

Model features

- Gauge sector extended by $U(1)_X$
- Tree-level Higgs mass enhancement (non-decoupling D-terms)
- CP-odd scalar acts as 750 GeV resonance
- Can potentially accommodate broad resonance

$$
W = -W_{\text{Yuk}} + Y_{\nu} \hat{\nu} \hat{l} \hat{H}_{u} + \hat{S} (\lambda_{e} \hat{E} \hat{\bar{E}} + \lambda_{u} \hat{U} \hat{\bar{U}}) + Y_{x} \hat{\nu} \hat{\bar{\eta}} \hat{\nu} + (\mu + \lambda \hat{S}) \hat{H}_{u} \hat{H}_{d} + \hat{S} (\xi + \lambda_{X} \hat{\eta} \hat{\bar{\eta}}) + M_{S} \hat{S} \hat{S} + \frac{1}{3} \kappa \hat{S} \hat{S} \hat{S} + \tilde{M}_{E} \hat{e} \hat{\bar{E}} + \tilde{M}_{U} \hat{u} \hat{\bar{U}} + M_{e} \hat{E} \hat{\bar{E}} + M_{u} \hat{U} \hat{\bar{U}} + Y_{e}' \hat{E} \hat{\bar{L}} \hat{H}_{d} + Y_{u}' \hat{U} \hat{q} \hat{H}_{u}
$$

[R. M. Capdevilla, A. Delgado, and A. Martin 1509.02472]

MODEL DETAILS

Model features

- Gauge sector extended by $U(1)_X$
- Tree-level Higgs mass enhancement (non-decoupling D-terms)
- CP-odd scalar acts as 750 GeV resonance
- Can potentially accommodate broad resonance

$$
W = -W_{\text{Yuk}} + Y_{\nu} \hat{\nu} \hat{l} \hat{H}_{u} + \hat{S} (\lambda_{e} \hat{E} \hat{\bar{E}} + \lambda_{u} \hat{U} \hat{\bar{U}})
$$

+
$$
Y_{x} \hat{\nu} \hat{\eta} \hat{\nu} + (\mu + \lambda \hat{S}) \hat{H}_{u} \hat{H}_{d} + \hat{S} (\xi + \lambda_{X} \hat{\eta} \hat{\eta})
$$

+
$$
M_{S} \hat{S} \hat{S} + \frac{1}{3} \kappa \hat{S} \hat{S} \hat{S} + \tilde{M}_{E} \hat{e} \hat{\bar{E}} + \tilde{M}_{U} \hat{u} \hat{\bar{U}}
$$

+
$$
M_{e} \hat{E} \hat{\bar{E}} + M_{u} \hat{U} \hat{\bar{U}} + Y_{e}' \hat{E} \hat{l} \hat{H}_{d} + Y_{u}' \hat{U} \hat{q} \hat{H}_{u}
$$

[R. M. Capdevilla, A. Delgado, and A. Martin 1509.02472]

Short analysis includes:

- Full tree-level mass spectrum
- RGEs and gauge kinetic mixing
- **•** Two-loop Higgs mass corrections
- Two-loop corrections to the 750 GeV scalar
- Diphoton and digluon rates
- Full scalar BRs and singlet-doublet mixing
- Compatibility with SM Higgs measurements
- Width constraints from vacuum stability
- **O** DM relic abundance
- Constraints from rare lepton flavour processes
- Z' mass limits

Resonance decay modes

Illustrate effect of singlet-doublet mixing $\lambda \neq 0$:

- CP-even scalar mainly mixture $\eta \& \bar{\eta}$ with small singlet component
- CP-odd almost purely singlet

Resonance decay modes

IS A LARGE WIDTH POSSIBLE?

```
ATLAS results slightly prefer a large
width ∼ 40 GeV
```
Explained with inv. decays to:

- Neutralinos
- Heavy neutrinos
- Sneutrinos

Is a large width possible?

ATLAS results slightly prefer a large width ∼ 40 GeV

Explained with inv. decays to:

- Neutralinos
- Heavy neutrinos
- Sneutrinos

IN THIS MODEL

Small sneutrino masses and splitting between Re & Im can be achieved BR to sneutrinos scales with Y_x

Is a large width possible?

ATLAS results slightly prefer a large width ∼ 40 GeV

Explained with inv. decays to:

- Neutralinos
- Heavy neutrinos
- Sneutrinos

IN THIS MODEL

Small sneutrino masses and splitting between Re & Im can be achieved BR to sneutrinos scales with Y_x

QUESTIONS?

 \bullet How large can Γ_{tot} varying Y_x ?

 \bullet How large can Y_x be before the vacuum becomes unstable?

Is a large width possible?

ATLAS results slightly prefer a large width ∼ 40 GeV

Explained with inv. decays to:

- Neutralinos
- Heavy neutrinos
- Sneutrinos

Using Vevacious:

IN THIS MODEL

Small sneutrino masses and splitting between Re & Im can be achieved BR to sneutrinos scales with Y_x

QUESTIONS?

- How large can Γ_{tot} varying Y_x ?
- \bullet How large can Y_x be before the vacuum becomes unstable?

SUMMARY

SARAH framework allows easy analysis of complete models

Reduces necessity to make (extreme) simplifying assumptions

Introduced perturbative model where large width is feasible

Backup Slides

Tree-level vs. one-loop

CAUTION

Tree-level enforced relations (w/o symmetry arguments) do not hold at the loop-level

Tree-level vs. one-loop

CAUTION

Tree-level enforced relations (w/o symmetry arguments) do not hold at the loop-level

Constraints from 8 TeV run

[Falkowski et al. 1512.05777]

PARAMETER VALUES

Mixing and decay width plots:

$$
m_{SUSY} = 1.5 \text{ TeV}, M_{\lambda} = 1 \text{ TeV}, \tan \beta = 20, \tan \beta_x = 1, g_X = 0.5, M_{Z'} = 3 \text{ TeV},
$$

\n
$$
\mu = 1 \text{ TeV}, B_{\mu} = (1 \text{ TeV})^2, v_S = 0.5 \text{ TeV}, M_S = -0.1 \text{ TeV}, B_S = 3.895 \text{ TeV}^2,
$$

\n
$$
\lambda_X = -0.2, A_X = 1 \text{ TeV}, \lambda_E = \lambda_U = 1, M_E = 0.4 \text{ TeV}, M_U = 1 \text{ TeV}, m_{\bar{\eta}} = 2 \text{ TeV}.
$$

For vacuum stability:

 $m_{\text{SUSY}} = 2.5 \text{ TeV}, \tan \beta = 10, \tan \beta_x = 1, g_X = 0.5, M_{Z'} = 2.5 \text{ TeV}, m_{\bar{\eta}} = 1 \text{ TeV},$ $v_S = 0.5 \text{ TeV}, B_S = 755000 \text{ GeV}^2, \lambda_X = -0.4, A_X = 0.4 \text{ TeV}.$