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The purpose of this talk?

i) Emphasise a number of deficiencies
in the diphoton literature

ii) Show how using SARAH framework
can help to prevent these deficiencies

iii) Illustrate elements of a small
complete example
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Motivation

Diphoton models

Composite Models

O(20) papers

Naturally broad resonance

Extra-dimensions

O(10) papers

Exotic Models

O(20) papers

Perturbative Models

O(200) papers

[All references in 1602.05581]
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Motivation

Decay width

Generic explanation involves
loop-induced couplings to both
photons and gluons

NP

S

[S. Knapen et al. 1512.04928]

Important prediction of a model
is the ratio
BR(S → gg)/BR(S → γγ)

[R. Franceschini et al 1512.04933]
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Motivation

Decay width
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Consider toy model containing:

Vector-like quarks Ψ (3,2, 7/6)

Singlet S (1,1, 0)

LY ⊃ (MF1 + YF1S) ΨLΨR + h.c.

[S. Knapen et al. 1512.04928]

Conclusion

Small mismatch in LO result as
αem(0) 6= αem(MS)

QCD corrections dominate over
LO mismatch
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Motivation

Constraints on a large diphoton width

Necessary decay rate depends on signal width

Narrow width: Γ(S → γγ)/MS ' 10−6

Large width: Γ(S → γγ)/MS ' 10−4

[R. Franceschini et al 1512.04933]

How to increase the width:

1 Fermions with large Yukawa couplings

2 Fermions/scalars with large multiplicity
and/or electric charge

3 Scalars with large cubic couplings
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Motivation

Constraints on a large diphoton width

Necessary decay rate depends on signal width

Narrow width: Γ(S → γγ)/MS ' 10−6

Large width: Γ(S → γγ)/MS ' 10−4

[R. Franceschini et al 1512.04933]

How to increase the width:

1 Fermions with large Yukawa couplings

2 Fermions/scalars with large multiplicity
and/or electric charge

3 Scalars with large cubic couplings

Option 1

Pert. calculation ⇒ Yukawa must
remain perturbative .

√
4π

(Not required in composite
models)
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Motivation

Constraints on a large diphoton width

Necessary decay rate depends on signal width

Narrow width: Γ(S → γγ)/MS ' 10−6

Large width: Γ(S → γγ)/MS ' 10−4

[R. Franceschini et al 1512.04933]

How to increase the width:

1 Fermions with large Yukawa couplings

2 Fermions/scalars with large multiplicity
and/or electric charge

3 Scalars with large cubic couplings

Option 2

Must check for Landau poles

Example:
SM + Nk generations of k++

[Kanemura et al. 1512.09048

Nomura et al. 1601.00386]

Nk µLandau

10 2× 1013 TeV
100 1.2× 105 TeV

1000 3.8 TeV
6000 2.7 TeV
9000 2.6 TeV
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Motivation

Constraints on a large diphoton width

Option 3

Alternative to fermions with large Yukawas −→ scalars with large κ

V ⊃ κS|X|2 +
1

2
MSS

2 +MX |X|2 + · · ·

Stability of the EW vacuum:
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Motivation

Mixing with the SM Higgs

Toy model with CP-even singlet S and electrically charged scalars X

V =
1

2
MSS

2 +MX |X|2 + µ2|H|2 + κS|X|2 + κHS|H|2

+ λSS
4 + λSXS

2X2 + λHX |H|2|X|2 + λ|H|4

At tree-level

Many studies choose κH = 0 =⇒ no mixing

Non-zero mixing:
=⇒ tree-level decays � loop decays

Other considerations

Similar arguments hold for vector-like fermions

κH 6= 0 often required for pseudo-scalar masses

Good solution: use CP to forbid unwanted
tree-level decays (see later slide)

Loop-level

S

X

X∗

H

H∗

⇒ κloop
H 6= 0

X

X∗

H

H∗

⇒ λloop
HX 6= 0
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Motivation

To VEV or not to VEV

Typical assumption

vS = 0 at all orders

Tadpole equations

∂V (1L)

∂vS
= T (1L) = T (T ) + δT = 0

Assuming

T (T ) = c1vS + c2v
2
S + c3v

3
S = 0

Ψ

γ

γ

S =⇒
Ψ

S

One-loop results

δT =

{
κA(M2

X) scalar loop

2YMΨA(M2
Ψ) fermion loop

A(x2) =
1

16π2
x2

[
1 + log

(
µ2

x2

)]

Result

If MΨ ∼ κ ∼MX ∼ O(1 TeV) then δT ' 1 TeV3/(16π2c1)
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SARAH Implementation

What is SARAH and how does it help?
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SARAH Implementation

What is SARAH and how does it help?

Collider
pheno

Dark
matter

Higgs
constraints

Vacuum
stability

↑ ↑ ↑ ↑
Flavour observables, BSM particle and Higgs decays

↑
Calculate running parameters, BSM masses at one-loop,

Higgs masses at two-loop, Fine-Tuning

↑
Create model files for MC tools & Vevacious as well as

Fortran code for SPheno
↑

Derive expressions for masses, vertices, RGEs, . . .

↑
Create SARAH input file

↑
Idea for a new model

U
se

r
S
A
R
A
H

S
P
h
e
n
o

(F
S
)

CalcHep, HB,
WHIZARD, MG5,
MicrOmegas,
Vevacious
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SARAH Implementation

What is SARAH and how does it help?

Can consider a complete model without (erroneous) simplifying assumptions

What’s new?

diphoton and digluon effective vertices calulated

SPheno then calculates decay width and production x-sec.

Eff. vertices can be passed to MadGraph & CalcHep
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SARAH Implementation

Decay width Implementation

Φ→ γγ

LO expressions for decay width
implemented using αew(µ = 0)

NLO SM corrections implemented for
three limits:

mΦ < mf : corrections from
heavy colour fermionic triplets

mΦ > 100mf : analytic
corrections in light quark limit

[M. Spira et al. hep-ph/9504378]

Intermediate range: numerical
values from HDECAY used

[Djouadi et al. hep-ph/9704448]

Φ→ gg

LO expressions for decay width
implemented

N3LO SM corrections implemented
[Baglio et al. 1312.4788

Kramer et al. hep-ph/961127

Chetyrkin et al. hep-ph/9705240, hep-ph/0512060

Schroder and Steinhauser hep-ph/0512058

Baikov and Chetyrkin hep-ph/0604194]

Only N2LO corrections for
pseudo-scalar Φ
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SARAH Implementation

Decay width implementation: SM comparison
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[LHC Higgs Cross Section Working Group Collaboration, J. R. Andersen et al. 1307.1347]
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SARAH Implementation

Decay width implementation: SM comparison
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SARAH Implementation

Decay width implementation: SM comparison
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SARAH Implementation

Decay width implementation: SM comparison
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SARAH Implementation

Model Name

Toy models with vector-like fermions
CP-even singlet SM+VL/CPevenS

CP-odd singlet SM+VL/CPoddS

Complex singlet SM+VL/complexS

Models based on the SM gauge-group
Portal dark matter SM+VL/PortalDM

Scalar octet SM-S-Octet B(1)

SU(2) triplet quark model SM+VL/TripletQuarks

Single scalar leptoquark LQ/ScalarLeptoquarks

Two scalar leptoquarks LQ/TwoScalarLeptoquarks B(3)

Georgi-Machacek model Georgi-Machacek

THDM w. colour triplet THDM+VL/min-3

THDM w. colour octet THDM+VL/min-8

THDM-I w. exotic fermions THDM+VL/Type-I-VL

THDM-II w. exotic fermions THDM+VL/Type-II-VL

THDM-I w. SM-like fermions THDM+VL/Type-I-SM-like-VL

THDM-II w. SM-like fermions THDM+VL/Type-II-SM-like-VL

THDM w. scalar septuplet THDM/ScalarSeptuplet

B(1) conflict with limits from S → jj, B(3) we disagree with their diphoton rate
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SARAH Implementation

Model Name

U(1) Extensions
Dark U(1)′ U1Ex/darkU1

Hidden U(1) U1Ex/hiddenU1

Simple U(1) U1Ex/simpleU1

Scotogenic U(1) U1Ex/scotoU1 B(2)

Unconventional U(1)B−L U1Ex/BL-VL

Sample of U(1)′ U1Ex/VLsample

flavour-nonuniversal charges U1Ex/nonUniversalU1

Leptophobic U(1) U1Ex/U1Leptophobic B(1)

Z′ mimicking a scalar resonance U1Ex/trickingLY

Non-abelian gauge-group extensions of the SM

LR without bidoublets LRmodels/LR-VL B(2)

LR with U(1)L × U(1)R LRmodels/LRLR B(2)

LR with triplets LRmodels/tripletLR

Dark LR LRmodels/darkLR

331 model without exotic charges 331/v1

331 model with exotic charges 331/v2

Gauged THDM GTHDM

B(1) conflict with limits from S → jj, B(2) inconsistencies in charge assignments
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SARAH Implementation

Model Name

Supersymmetric models

NMSSM with vectorlike top NMSSM+VL/VLtop B(1)

NMSSM with 5’s NMSSM+VL/5plets

NMSSM with 10’s NMSSM+VL/10plets

NMSSM with 5’s & 10’s NMSSM+VL/10plets

NMSSM with 5’s and RpV NMSSM+VL/5plets+RpV

Broken MRSSM brokenMRSSM

U(1)′-extended MSSM MSSM+U1prime-VL

E6 with extra U(1) E6MSSMalt

B(1) conflict with limits from S → jj
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Example Analysis

Model details

Model features

Gauge sector extended by U(1)X

Tree-level Higgs mass enhancement
(non-decoupling D-terms)

CP-odd scalar acts as 750 GeV resonance

Can potentially accommodate broad resonance

W = −WYuk + Yν ν̂ l̂ Ĥu + Ŝ(λe Ê
ˆ̄E + λu Û

ˆ̄U)

+ Yx ν̂ ˆ̄η ν̂ + (µ+ λŜ) Ĥu Ĥd + Ŝ(ξ + λX η̂ ˆ̄η)

+MS Ŝ Ŝ +
1

3
κ Ŝ Ŝ Ŝ + M̃E ê

ˆ̄E + M̃U û
ˆ̄U

+Me Ê
ˆ̄E +Mu Û

ˆ̄U + Y ′e Ê l̂ Ĥd + Y ′u Û q̂ Ĥu

[R. M. Capdevilla, A. Delgado, and A. Martin 1509.02472]
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ˆ̄U

+Me Ê
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SF Gen. (GSM, U(1)X)

ν̂ 3 (1,1, 0,− 1
2
)

Û 3 (3̄,1,− 2
3
,− 1

2
)

ˆ̄U 3 (3̄,1, 2
3
, 1

2
)

Ê 3 (1,1, 1, 1
2
)

ˆ̄E 3 (1,1,−1,− 1
2
)

η̂ 1 (1,1, 0,−1)
ˆ̄η 1 (1,1, 0, 1)

Ŝ 1 (1,1, 0, 0)
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Model details
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[R. M. Capdevilla, A. Delgado, and A. Martin 1509.02472]

Short analysis includes:

Full tree-level mass spectrum

RGEs and gauge kinetic
mixing

Two-loop Higgs mass
corrections

Two-loop corrections to the
750 GeV scalar

Diphoton and digluon rates

Full scalar BRs and
singlet-doublet mixing

Compatibility with SM Higgs
measurements

Width constraints from
vacuum stability

DM relic abundance

Constraints from rare lepton
flavour processes

Z′ mass limits
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Example Analysis

Resonance decay modes

Illustrate effect of singlet-doublet
mixing λ 6= 0:

CP-even scalar mainly
mixture η & η̄ with small
singlet component

CP-odd almost purely singlet
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Example Analysis

Resonance decay modes
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Example Analysis

Is a large width possible?

ATLAS results slightly prefer a large
width ∼ 40 GeV

Explained with inv. decays to:

Neutralinos

Heavy neutrinos

Sneutrinos

In this model

Small sneutrino masses and splitting
between Re & Im can be achieved

BR to sneutrinos scales with Yx

Questions?

1 How large can Γtot varying Yx?

2 How large can Yx be before the
vacuum becomes unstable?

Using Vevacious:
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Example Analysis

Summary

SARAH framework allows easy analysis
of complete models

Reduces necessity to make (extreme)
simplifying assumptions

Introduced perturbative model where
large width is feasible
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Example Analysis

Backup Slides
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Example Analysis

Tree-level vs. one-loop

Caution

Tree-level enforced relations (w/o
symmetry arguments) do not hold at
the loop-level

Decay mode ΓXX/Γγγ

e+e− + µ+µ− 0.6

τ+τ− 6
Zγ 6
ZZ 6
Zh 10
hh 20

W+W− 20
tt̄ 300
bb̄ 500
jj 1300

inv. 400

[R. Franceschini et al 1512.04933]
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Example Analysis

Constraints from 8TeV run

[Falkowski et al. 1512.05777]
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Example Analysis

Parameter values

Mixing and decay width plots:

mSUSY = 1.5 TeV ,Mλ = 1 TeV , tanβ = 20 , tanβx = 1 , gX = 0.5 ,MZ′ = 3 TeV,

µ = 1 TeV , Bµ = (1 TeV)2 , vS = 0.5 TeV ,MS = −0.1 TeV , BS = 3.895 TeV2,

λX = −0.2 , AX = 1 TeV , λE = λU = 1 ,ME = 0.4 TeV ,MU = 1 TeV,mη̄ = 2 TeV .

For vacuum stability:

mSUSY = 2.5 TeV , tanβ = 10 , tanβx = 1 , gX = 0.5 ,MZ′ = 2.5 TeV,mη̄ = 1 TeV,

vS = 0.5 TeV , BS = 755000 GeV2 , λX = −0.4 , AX = 0.4 TeV.
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