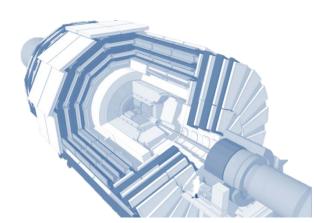
LHC Phase II Upgrade R&D ATLAS, CMS, LHCb

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. [European Strategy for Particle Physics Update 2013]

Phase II Upgrades

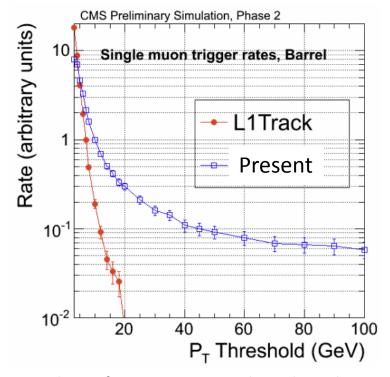
- from LHC design to ultimate performance
 - luminosity $1x10^{34}$ cm⁻²s⁻¹ $\rightarrow 5x10^{34}$ cm⁻²s⁻¹ leveled (ATLAS + CMS), $4x10^{32}$ cm⁻²s⁻¹ $\rightarrow 2x10^{33}$ cm⁻²s⁻¹ (LHCb)

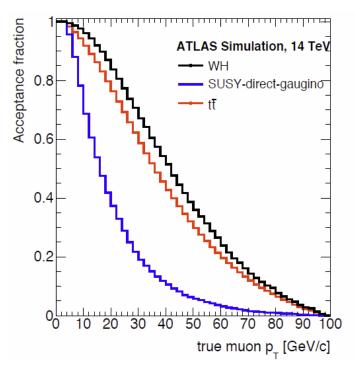
x5


- integrated luminosity 300/fb \rightarrow 3000/fb (ATLAS + CMS), 5/fb \rightarrow 50/fb (LHCb)

x10

→ new and more precise measurements, extended reach for discoveries IF detector performance can be preserved / improved


- the price to pay:
 - pile-up 20 \rightarrow 140-200 (ATLAS+CMS), 2 \rightarrow 5 (LHCb)
 - particle densities x5-10
 - radiation damage x10
- the casualties (radiation damage and/or performance loss)
 - pixel
 - tracker
 - trigger
 - end-cap calorimetry, electronics
 - end-cap muon system, electronics
- the brave (in general)
 - calorimetry
 - muon system
- when?
 - installation mainly in 'long shut down 3' currently foreseen 2022-2023 (ATLAS+CMS)
 partly already in 'long shutdown 2' currently foreseen 2018 (LHCb)
 - R&D NOW


Trigger Challenge

- more luminosity → more interesting events but also more background
- only useful if interesting events can still be triggered and read-out
- high pile-up and particle densities lead to decreased resolution at trigger level
 trigger rates increase beyond capacity of trigger/DAQ system

matching of muon system tracks with tracker tracks

- → improved precision of pt measurement at trigger level
- → large rate reduction

simply increasing trigger thresholds would kill the signal

General Survival & Improvement Concepts

- pile-up 20 → 140...200
 - association of tracks and calorimeter energies to individual vertices (up to high eta)
 - particle flow reconstruction
- particle densities x5-10 (ATLAS+CMS: 6'000 primary tracks per event)
 - finer granularity → more channels
- data rates (particles per event) x5-10
 - higher band-width (analogue → digital links)
- increased trigger rates (at fixed thresholds) due to degraded resolution and ambiguities
 - improve resolution of pt and E measurement at trigger level
 - use topological information
 - provide tracking information to L1 trigger
 - increase latency and acceptable trigger rates (LHCb: no trigger at all: 40 MHz read-out)
- radiation damage x10
 - more radiation hard detection elements (silicon, crystals)
- increased front-end power consumption
 - ASIC technology scaling 250nm → 130 nm → 65 nm to reduce power per transistor
 - improved powering and cooling
- reduce material budget inside detector volume
- changes to a running system
 - test new systems as early as possible (e.g. run new triggers in parallel to old ones, run pilot systems inside detectors)

new technologies needed

+ keep what works well

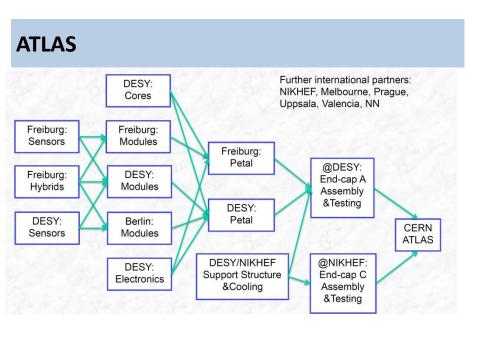
+ cost-effective solutions

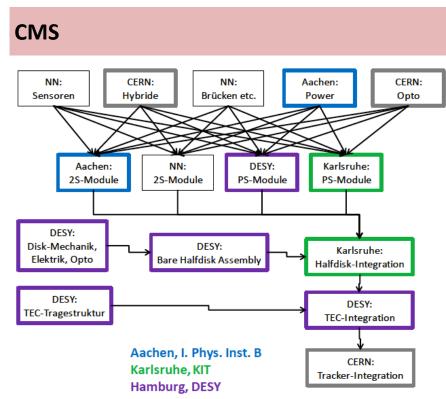
+ keep logistics in mind (ALARA)

+ keep logistics in mind

Phase II Upgrade Plans of Experiments

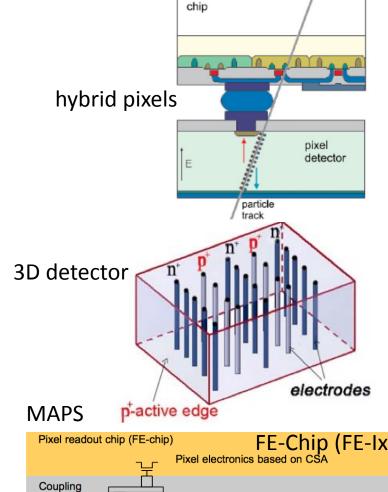
	ATLAS	CMS	LHCb
Pixel Vertex Det.	New BN, DO, GÖ, HD, MPI, SI, W	New	New (Velo)
Tracker	New, all silicon B, DESY, FR	New, all silicon AC, DESY, KA	New Fiber Tracker Replace Upstream Tracker
			Replace RICH Electronics
Calorimeters	Replace Electronics DD, MPI	Replace End-Caps Replace Electronics	Replace Electronics
Muon Syst.	Replace electronics FR, MZ, M, MPI, WÜ	Extend End-Caps Replace Electronics	Replace Electronics
Trigger	Upgrade HD, MZ DESY, HD	Upgrade	Trigger-less

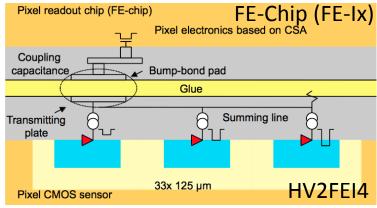

German groups are active in many of the key areas!


Cost (ATLAS,CMS; roughly):

- 50% Pixel+Tracker
- 20% Calorimeters
- 10% Muon Syst.
- 10% Trigger/DAQ
- 10% Common Fund

Upgrades are a joint effort of Universities, DESY, KIT and MPI


An example: Tracker End-Cap Construction

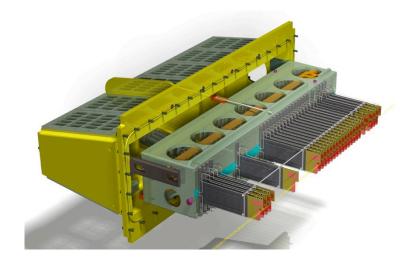


ATLAS + CMS Pixel Detectors at HL-LHC

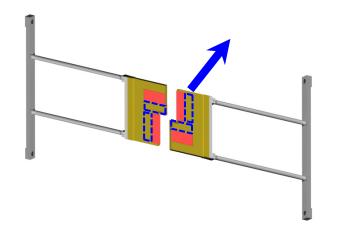
- extreme environment
 - particle rates up to 1-2 GHz/cm²
 - fluence up to 2x10¹⁶ n_{eq}/cm²
 - Ionizing dose up to 10 MGy
- → hybrid pixels (sensor layer + read-out layer)
- \rightarrow smaller pixels (e.g. 30µm x 100µm)
- sensor materials under study
 - thin planar silicon (100-200 μm)
 - 3D detectors (part of ATLAS IBL)
 - diamond
 - depleted MAPS (CMOS sensor with ~20μm depletion depth + pre-amplifier → S/N~100)
- interconnection technologies
 - bump-bonding (as today)
 - 3D integration
 - glue bonding?
- front-end chip: new R&D collaboration (RD53)
 - joint development of a pixel chip for phase II in 65nm technology for ATLAS and CMS

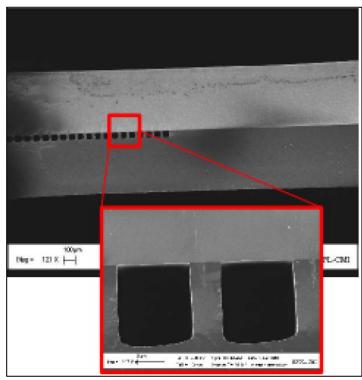
front-end

ASIC technology scaling

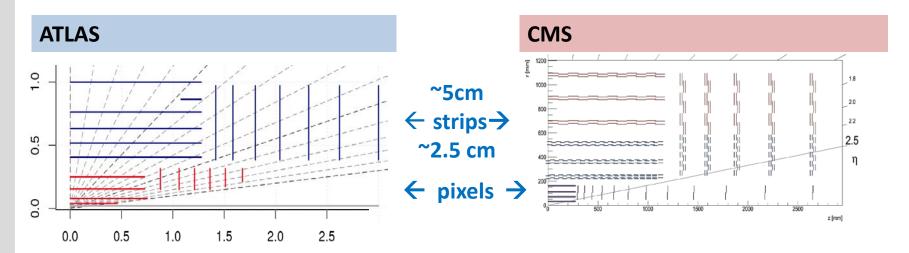

Generation	Cost / mask	Cost / 8"	Cost	Density	Design	Power per
[nm]	set	wafer	Proto/mm2	gates/[unit A]	Complexity	gate
250	1.0	1.0	1.0	1	1	1.00
130	2.9	0.9	6.0	5	3-5	0.36
65	5.3	1.1	10.8	27	1 0-25	0.18
28	15.0	2.4	36.3	50	25-125	0.09

more functionality

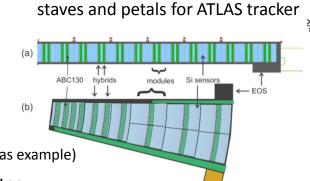

reduced power per transistor

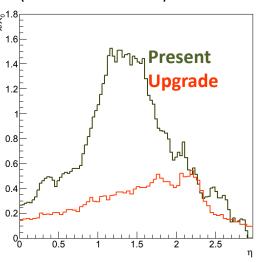

	.35 um	250 nm	180 nm	130 nm	65 nm	< 65 nm
	Power					
Pixels (Hybrids)				✓	✓	✓
Pixels (Monolithic)			✓	✓	1	
Si Trackers				✓	✓	
Calorimeters		✓		✓		
TPC				✓	✓	
MPGD				✓		
Links (Electrical and Optical)				1	1	✓
Embedded Power	✓		✓			

LHCb new VELO

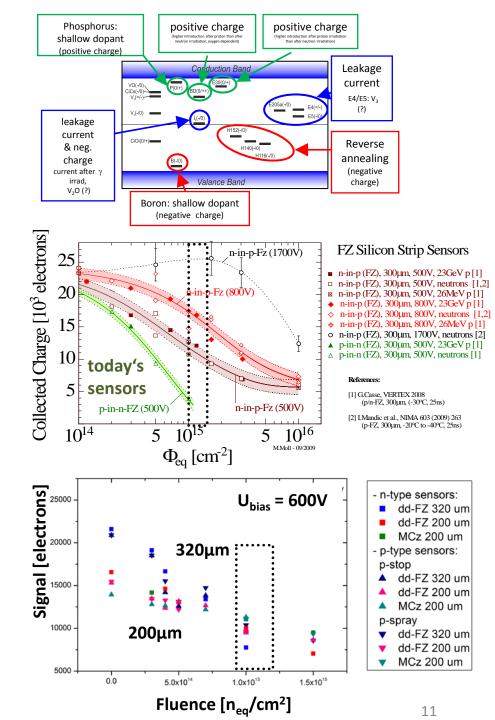


- strips → pixels
- 8.2 mm → 5.1 mm distance of active elements to LHC beam
- thinning of RF foil between sensors and primary LHC vacuum 300μm → 150μm
- VeloPix ASIC (TimePix variant)
- micro-channel CO₂ cooling



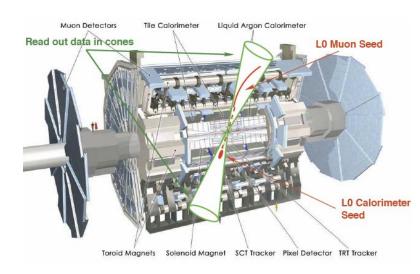

New ATLAS + CMS Trackers

- all silicon outer trackers
- acceptance $|\eta| < 2.5$ ($|\eta| < 4$ under study in CMS)
- 5.5 / 6 barrel layers + 7 / 5 disks
- 2 sensors per module with
 - 40 mrad stereo angle (ATLAS)
 - pt logic (CMS)
- 200 m² of silicon (each)
- front-end power: 33kW → 58kW (CMS as example)
- much reduced material budget estimates
 - CO₂ cooling
 - DC-DC powering
 - lighter structures
 - relocation of services


Material budget **estimate** (CMS outer tracker)

HGF-Alliance Project of ATLAS and CMS groups: "Enabling Technologies for Silicon Tracking detectors at HL-LHC" (PETTL) $$\rm 10^{\circ}$

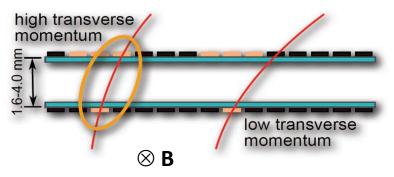
Silicon Strip Sensors


- up to around 1 x 10¹⁵ n_{eq}/cm² for ATLAS+CMS outer tracker
- detailed understanding of bulk defects in past years
- sensors used today would not deliver signal at the end of phase II
- beyond 10¹⁵ n_{eq}/cm² signal charge does not scale with the thickness
 → choose thin sensors
- design choices:
 - p-type substrates (today: n-type)
 - 200 ... 320 μm thickness
 - operation at up to 500...600V

Level 1 Track Trigger

Benefits:

- validate calorimeter or muon trigger objects (e.g. discriminate electrons from $\pi^0 \rightarrow \gamma\gamma$)
- improve muon trigger pt measurement
- check isolation of e, γ , μ or τ candidates
- association to primary vertex



ATLAS:

- to be installed before Phase-II: FTK Fast TracK Trigger: at L2, 25μs, pattern recognition with associative memories, track fitting in FPGAs
- 'pull architecture'
 - L0 trigger (Calo/Muon) reduces rate within $^{\sim}$ 6 µs to \gtrsim 500 kHz and defines 'regions of interest' (RoIs)
 - L1 track trigger extracts tracking info inside Rols from detector FEs

CMS:

- 'push architecture' for outer tracker
 - track segment selection at front-ends based on pt measurement (at 40 MHz)
 - all tracks with p_T > 2 GeV
 - ~1mm primary vertex resolution
 - pattern recognition and track fit at L1 in off-detector electronics (AM+FPGAs)
- explore 'pull architecture' for pixel → b tags at L1

Power

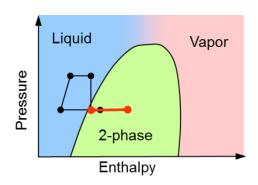
- higher channel density
- more functionality
- higher speed
- smaller chip technologies

front-ends need more power (x2) at smaller voltages (:2)

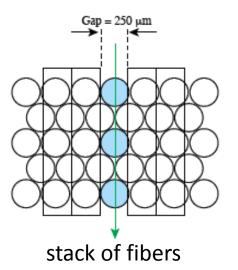
- → currents x4
- → cable losses x16
- → no tracking at HL-LHC with today's powering scheme
- → new schemes also help to reduce material budget

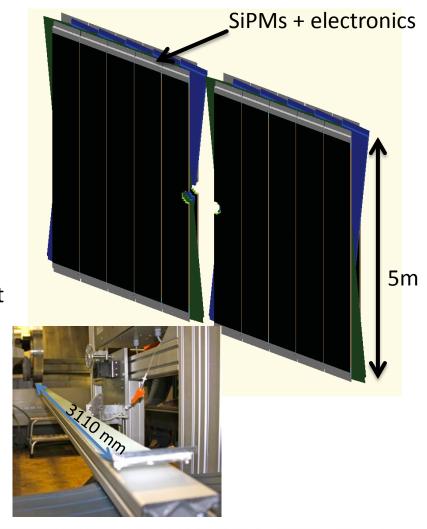
DC-DC conversion:

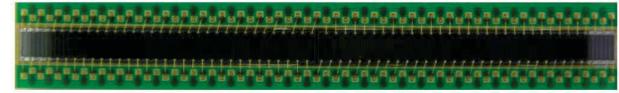
supply power at high voltage (~10V)


serial powering:

use same current in a chain of modules

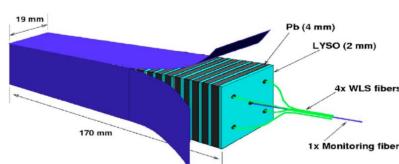

Cooling


- evaporative CO₂ cooling for all new pixel and tracking detectors
- pioneered by LHCb Velo
- 15...100 bar
- 200...300 J/g instead of ~2 J/g in a mono-phase cooling system
- → much thinner (~2 mm dia.) and longer pipes possible
- → large material reduction



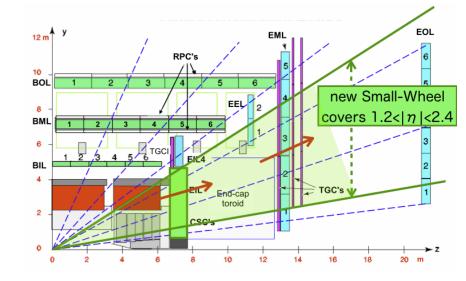
Fiber Tracker for LHCb

- scintillating fibers+ silicon photo-multipliers (SiPMs)
- 2.5 m long fiber modules
- SiPMs and electronics at periphery
- new technology to equip large areas with fast and precise tracking detectors when particle densities are not too high

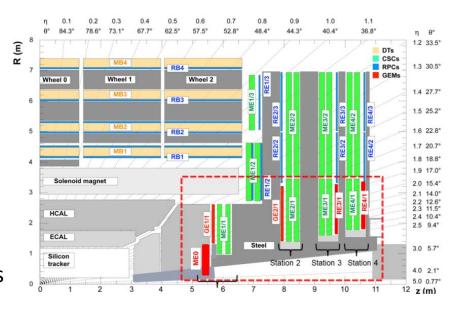

Calorimetry

- replace LAr + TileCal FE+BE electronics: 40 MHz digitization, inputs to LO/L1
- replace HEC cold preamps if required
- replace forward calorimeter if required

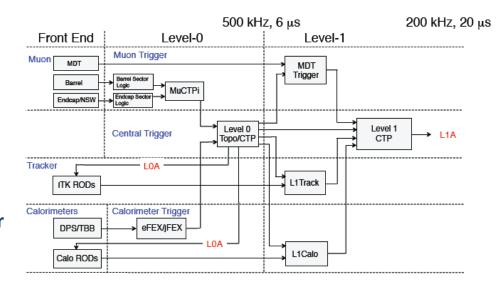
- full replacement of ECAL and HCAL end-caps
 - radiation induced loss of transparency
 - baseline: tower based sampling calorimeters
 e.g. Lead-LYSO shashlik ECAL
 - + HCAL with more read-out fibers



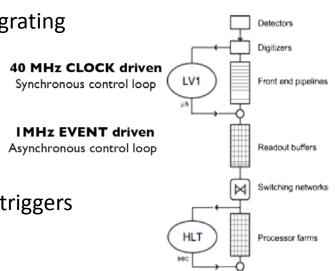
- dual read-out calorimeter (scintillation + Cerenkov light (a la DREAM))
- high granularity particle flow calorimeter (a la CALICE)
- extension of coverage from $|\eta| < 3$ to $|\eta| < 4$ is under consideration (VBF tagging)
- replace ECAL barrel electronics (crystal level granularity, 10µs latency, improved noise rejection)
- replace Hadron Forward calorimeter if required


Muon Systems

- detector chambers will work at HL-LHC
- upgrade FE electronics
 - accommodate LO/L1 trigger scheme
- improve L1 pt resolution
 - using MDT information seeded by RPC/TGC ROI



- completion with higher resolution muon stations at 1.6 < $|\eta|$ < 2.4 under study
 - GEMs and Glass-RPC
- investigating coverage beyond $|\eta| < 2.4$
 - GEM tagging station (ME0) coupled with extended pixel tracking
- replace electronics of DT 'minicrates' for radiation tolerance and higher trigger rates



Trigger

- already before phase II:
 - L1 Topological Trigger
 - High precision calorimeter L1 trigger
 - Fast tracking at L2
- split L1 into
 - L0: muon + calorimeters
 - up to 500kHz, ~6μs latency
 - L1: muon + calorimeters + track trigger
 - up to 200kHz, ~6+14μs latency
- HLT accept up to 5-10 kHz

- increasing latency from 3.2 µs to 10µs will allow integrating tracking into all trigger objects at L1
 - requires replacement of ECAL barrel electronics (+ pixel, tracker, ECAl end-cap rebuilt anyway)
- increase L1 accept rate from 100 kHz up to 1 MHz
- L1 tracking trigger
- new (finer segmented) L1 calorimeter, muon, global triggers
- HLT output rate of 10 kHz
 - maintain present HLT rejection factor

Mass storage

Helmholtz Alliance

PHYSICS AT THE TERASCALE

Deutsches Elektroren-Synchrotron DESY ++ Kurtschuler institut für Technologie - Großtorschungsbereich +++ Max-Planck-Institut für Physik München +++ Ribenisch-Westfällsche Technische Hichorschalt Aachen ++- Humboldt-Universität zu Berlin +++ Planinische Driversität Dresdon +++ Abert-Ludwigs Universität Freburg ++- Justs-Lebig-Universität Gresdon +++ Georg-August-Universität Grittingen ++- Universität Hamburg +++ Ruprecht-Karis-Universität Heidelberg ++- Karis-Universität Heidelberg ++- Universität Heidelberg ++- Karis-Universität Heidelberg ++- Universität Heid

7th Annual Workshop

2-4 December 2013 Karlsruhe

Tuesday 03 December 2013

14:00 - 18:00 Detector Project: LHC Phase II Upgrade Plans in Germany

Convener: Lutz Feld (RWTH Aachen)

14:00 Introduction 15'

Speaker: Lutz Feld (RWTH Aachen)

14:20 ATLAS Pixel System 15'

Speaker: Fabian Hügging (Universität Bonn)

14:40 CMS Pixel System 15'

Speakers: Erika Garutti (University of Hamburg) , Erika Garutti (DESY)

Session on LHC Phase II

at Alliance Workshop

Upgrade Plans in Germany

15:00 ATLAS Tracking System 15'

Speaker: Ulrich Parzefall (Uni Freiburg)

15:20 CMS Tracking System 15'

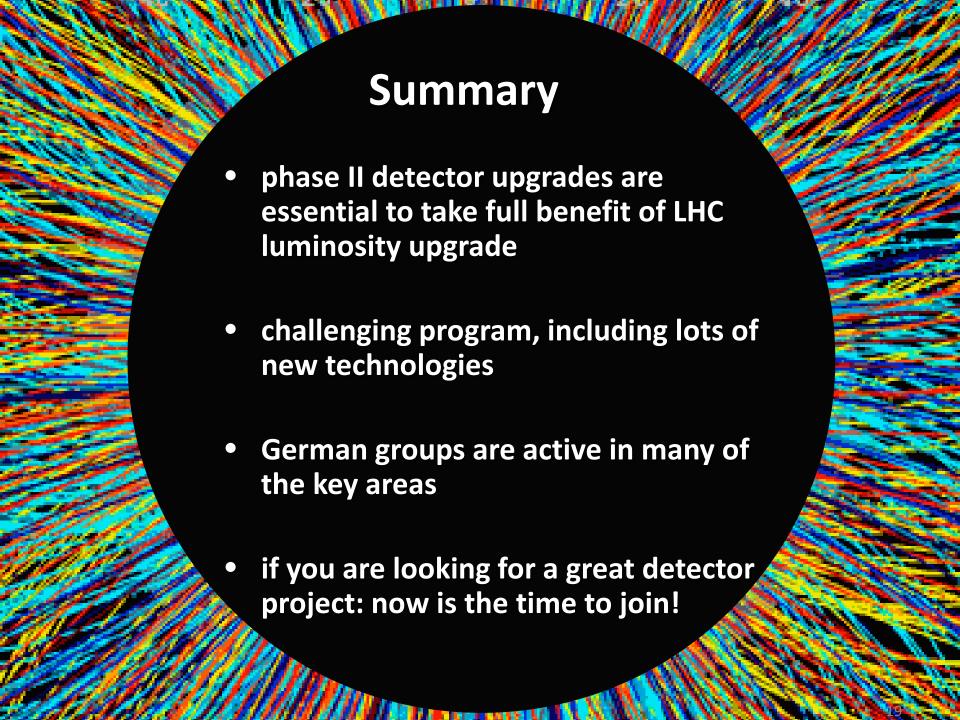
Speaker: Alexander Dierlamm (Karlsruher Institut für Technologie)

18

15:40 Coffee Break 30'

16:10 ATLAS Calorimetry 15'

Speaker: Olga Novgorodova (DESY)


16:30 ATLAS Muon System 15'

Speaker: Oliver Kortner (Max-Planck-Institut für Physik)

16:50 CMS Muon System 15'

Speaker: kerstin Hoepfner (RWTH Aachen)

17:30 LHCb 25'

